Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>
Answer:
The final velocity of the ball is 39.2 m/s.
Explanation:
Given that,
A ball is dropped from rest from a high window of a tall building.
Time = 4 sec
We need to calculate the final velocity of the ball
Using equation if motion

Where, v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
Put the value into the formula


Hence, The final velocity of the ball is 39.2 m/s.
Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation:
It might be 4.0 or 2.22344 seconds as velocity speed