Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer:
work done = 48.88 ×
J
Explanation:
given data
mass = 100 kN
velocity = 310 m/s
time = 30 min = 1800 s
drag force = 12 kN
descends = 2200 m
to find out
work done by the shuttle engine
solution
we know that work done here is
work done = accelerating work - drag work - descending work
put here all value
work done = ( mass ×velocity ×time - force ×velocity ×time - mass ×descends ) 10³ J
work done = ( 100 × 310 × 1800 - 12×310 ×1800 - 100 × 2200 ) 10³ J
work done = 48.88 ×
J
Answer:
See explaination and attachment.
Explanation:
Iteration method is a repetitive method applied until the desired result is achieved.
Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below
x = pi(x)
Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).
Similarly for second, thrid and so on. approximation
x2 = pi(x1)
x3 = pi(x2)
x4 = pi(x3)
xn = pi(xn-1).
please go to attachment for the step by step solution.