Answer:
hello some part of your question is missing below is the complete question
answer :
A) 162750 Ib.ft
B) - 64950 Ib.ft
Explanation:
Applying Muller-Breslau's law
we will make assumptions which include assuming an imaginary hinge at G
therefore the height of I.LD for B.M at G = ( 12 * 8 ) / 20 = 4.8
height of I.L.D at C = 2.4 ( calculated )
height of I.L.D at F = 1.5 ( calculated )
A) Determine Maximum positive moment produced at G
= [ (1/2 * 20 * 4.8 ) ( 600 + 300 ) ] + [ ( 25 * 4.8 * 10^3 ) ] - [ ( 1/2 *2.4*20 ) * 300 ] + [ (1/2 * 1.5 * 10 ) ( 600 + 300 ) ]
= 162750 Ib.ft
B) Determine the maximum negative moment produced at G
= [ ( 1/2 * 20 * 4.8 ) * 300 ] - [ ( 1/2 * 2.4 * 20 ) ( 600 + 300 ) ] - [ (2.5 * 10^3 * 2.4 ) ] + [ ( 1/2 * 1.5 * 10) * 300 ]
= - 64950 Ib.ft
Answer:
Why do you hate hugs maybe you do want the human contact
Explanation:
It normal I like to dap people up instead of hugs to
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
<h3>The static equilibrium is given as:</h3>
F = P (Normal force)
Formula for moment at section
M = P(4 + 1.5/2)
= 4.75p
Solve for the cross sectional area
Area = 
d = 1.5

= 1.767 inches²
<h3>Solve for inertia</h3>

= 0.2485inches⁴
Solve for the tensile force from here

30x10³ = 
30000 = 14.902 p
divide through by 14.902
2013.15 = P
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
Read more on tensile force here: brainly.com/question/25748369
Answer:
a) see attachment
b) A= m0m1+ m1m2+ m0m2
see attachment for K-map
c) see attachment
Explanation:
a) see attachment for truth table
b) see attachment for k-map
A= m0m1+ m1m2+ m0m2
c) see attachment for gate level circuit