1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
9

Cuál de las siguientes es la mejor manera de practicar sus habilidades de tecnología de secundaria?

Engineering
1 answer:
Mkey [24]3 years ago
8 0
Huh? Do you know English?
You might be interested in
Technician A says that the paper test could detect a burned valve. Technician B says that a grayish white stain on the engine co
Bumek [7]

Answer:

Both Technician A and B are correct.

Explanation: Both are correct, but keep note that different color coolants leave different color  stains.

6 0
3 years ago
A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
Sergeu [11.5K]

To solve the problem it is necessary to consider the concepts and formulas related to the change of ideal gas entropy.

By definition the entropy change would be defined as

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{P_2}{P_1})

Using the Boyle equation we have

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{v_1T_2}{v_2T_1})

Where,

C_p = Specific heat at constant pressure

T_1= Initial temperature of gas

T_2= Final temprature of gas

R = Universal gas constant

v_1= Initial specific Volume of gas

v_2= Final specific volume of gas

According to the statement, it is an isothermal process and the tank is therefore rigid

T_1 = T_2, v_2=v_1

The equation would turn out as

\Delta S = C_p ln1-ln1

<em>Therefore the entropy change of the ideal gas is 0</em>

Into the surroundings we have that

\Delta S = \frac{Q}{T}

Where,

Q = Heat Exchange

T = Temperature in the surrounding

Replacing with our values we have that

\Delta S = \frac{230kJ}{(30+273)K}

\Delta S = 0.76 kJ/K

<em>Therefore the increase of entropy into the surroundings is 0.76kJ/K</em>

8 0
3 years ago
Please answer the questions !
gizmo_the_mogwai [7]

Answer:

120

Explanation:

6 0
3 years ago
Consider a multiprocessor system and a multithreaded program written using the many-to-many threading model. Let the number of u
Montano1993 [528]

Answer:

At the point when the quantity of bit strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just part strings to processors and not client level strings to processors. At the point when the quantity of part strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used all the while. Be that as it may, when a part string obstructs inside the portion (because of a page flaw or while summoning framework calls), the comparing processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, in this way expanding the use of the multiprocessor system.When the quantity of part strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just bit strings to processors and not client level strings to processors. At the point when the quantity of bit strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used at the same time. Be that as it may, when a part string hinders inside the piece (because of a page flaw or while summoning framework calls), the relating processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, along these lines expanding the usage of the multiprocessor framework.

4 0
3 years ago
Express 2/16 in thirty-seconds
mafiozo [28]

Answer:

\frac{2}{16}  = \frac{4}{32} in thirty seconds.

Explanation:

one thirty second is one part out of 32 equal section . It is used to describe amounts accurately.

\frac{2}{16} can be easily expressed as \frac{4}{32}

3 0
3 years ago
Other questions:
  • Name two types of Transformers.
    6·1 answer
  • Here u go vagdhf dis day did. Du video ioi Hi I gotta go to do something fun to do something that would you want to me see you l
    15·1 answer
  • The pistons of a V-6 automobile engine develop 226.5 hp. If the engine driveshaft rotational speed is 4700 RPM and the torque is
    14·1 answer
  • You want to know your grade in Computer Science, so write a program that continuously takes grades between 0 and 100 to standard
    7·1 answer
  • Lately, you have noticed some repetitive stress in your wrist. Which sign is most likely the cause of that stress and pain?
    7·1 answer
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • I will put other link in comments
    12·1 answer
  • Which of the following best describes the basic purpose of the internet?
    7·2 answers
  • Explain crystallographic defects.
    11·1 answer
  • 1 A power transmission includes a belt drive, a chain drive and a gear drive. Which of the following is the best arrangement bet
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!