Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi
Answer:
<u>Final</u><u> answer</u><u> </u><u>-</u>
<u>
</u>
<u>hope </u><u>helpful</u><u> </u><u>:</u><u>D</u>
Answer:
27
Step-by-step explanation:
(whole secant) x (external part) = (tangent)^2
(48+x) * 48 = 60^2
(48+x)48=3600
Divide each side by 48
48+x =75
Subtract 48
48+x-48 = 75-48
x =27
Common difference between the terms is 36
Formula for nth term is 
27th term is 961
Given :
X, 2X + 11 and 4X - 3 are consecutive terms of an arithmetic sequence
To Find:
We need to find the constant difference between the given terms and also find the nth term . Also find the 27th term .
To find the difference , we need to take the difference of consecutive terms

Both the common differences are equal

First term is 25
second term is 2(25)+11=61
Difference is 61-25=26
Common difference = 36
Use nth term formula is

To find 27th term , replace n with 27

Learn more : brainly.in/question/41142594
Answer:
d=rt In this problem we are looking for the distance, but we will have to go about it indirectly. If she's traveling the same exact road going and returning, then the distance traveled both ways is exactly the same. Since d = rt, and d is the same, by the substitution property, if and , then , and . So we need to rt for the trip going, rt for the trip returning and set them equal to each other and solve for t. Going is a rate of 24, and the time is t (since we don't know t), and returning is a rate of 30, and the time is 13 1/3-t. (If the whole trip takes 13 1/3 hours, and t is the time going, then the time returning is the difference between the total time and the going time. That concept is one that baffles most algebra students!). So our r1t1 is 24t, and our r2t2 is 30(13 1/3 - t). Set them equal to each other and that will look like this: That fraction of 40/3 is 13 1/3 made into an improper fraction. Distributing that we will have and 54t = 400. That means that t = 7.407. We have time, and that's great, but we need distance! Go back to one of your equations for distance and sub in t and solve for d. d = 24t, and d = 24(7.407), so d = 177.768 miles.