Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.
Answer:
955.36 seconds ≈ 16 minutes
Explanation:
Power(P) is the rate of doing work(W)
That is, P = W/t, where t is the time.
multipying both sides with 't' and dividing with 'P', we get: t=W/P
Here, W = 5.35 x 10^10 J and P = 5.6 x 10^7 W ( 1 W = 1 J/s).
Therefore , on dividing W with P, we get 955.36 seconds.
Answer:
An atom with a closed shell of valence electrons (corresponding to an electron configuration s2p6) tends to be chemically inert. An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion.Explanation:
Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
B is the answer, I’m really good at this subject