1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
4 years ago
9

To understand how to find the velocities of objects after a collision.

Physics
1 answer:
trasher [3.6K]4 years ago
5 0

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

You might be interested in
Find the energy u of the capacitor in terms of c and q by using the definition of capacitance and the formula for the energy in
gtnhenbr [62]

The formula for the energy in a capacitor , u in terms of q and c is q²/2c

<h3>What is the energy of a capacitor?</h3>

The energy of a capacitor u = 1/2qv where

  • q = charge on capacitor and
  • v = voltage across capacitor.

<h3>What is the capacitance of a capacitor?</h3>

Also, the capacitance of a capacitor c = q/v where

  • q = charge on capacitor and
  • v = voltage across capacitor.

So, v = q/c

<h3>The formula for energy of the capacitor in terms of q and c</h3>

Substituting v into u, we have

u = 1/2qv

= 1/2q(q/c)

= q²/2c

So, the formula for the energy in a capacitor , u in terms of q and c is q²/2c

Learn more about energy in a capacitor here:

brainly.com/question/10705986

#SPJ12

3 0
2 years ago
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of
Rudiy27

Answer:

Explanation:

Given

mass of spring m=100\ gm

extension in spring x=5\ cm

downward velocity v=70\ cm/s

Position in undamped free vibration is given by

u(t)=A\cos \omega _0t+B\sin \omega _0t

where \omega _0^2=\frac{k}{m}

also \frac{k}{m}=\frac{g}{L}

\omega _0^2=\frac{k}{m}=\frac{9.8}{0.05}

\omega _0=14

u(t)=A\cos(14t)+B\sin(14t)

it is given

u(0)=0

u'(0)=70\ cm/s

substituting values we get

A=0

u(t)=B\sin (14t)

u'(t)=14B\cos (14t)

70=14B

B=\frac{10}{2}

B=5

u(t)=5\sin (14t)

3 0
3 years ago
What’s the velocity of a sound wave traveling through air at a temperature of 18°C (64.4°F)?
Anna11 [10]

Answer:

342 m/s

Explanation:

The velocity of sound in air is approximated as:

v ≈ 331.4 + 0.6 T

where v is the velocity in m/s and T is the temperature in Celsius.

At T = 18:

v ≈ 331.4 + 0.6 (18)

v ≈ 342.2

The velocity is approximately 342 m/s.

4 0
4 years ago
Read 2 more answers
Could anyone can help me for this question I don’t understand how I can do?!! Please it really important!!
stiv31 [10]
Im sry i cant help u
6 0
4 years ago
3) A dock worker pushes a 72 kg crate up a 2.0 m high,
Vlad [161]

Work done on the crate is 1411.2 J

Explanation:

Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.

                                     Work done = F * d

where F represents the force and d represents the distance moved by the object.

mass = 72 kg , distance moved by the object is given by 2.0 m

Force F = mass * gravity = 72 * 9.8

             = 705.6 N =706 N.

Work done = 706 * 2.0 = 1412 J.

                   

7 0
4 years ago
Other questions:
  • Which statement best compares momentum and kinetic energy?
    9·2 answers
  • How do you calculate energie
    6·2 answers
  • In a Joule experiment, a mass of 6.51 kg falls through a height of 66.8 m and rotates a paddle wheel that stirs 0.68 kg of water
    12·1 answer
  • Astronomersestimatethata2.0-km-diameterasteroidcollides with the Earth once every million years. The collision could pose a thre
    7·2 answers
  • Please help me fast and i brainliest!! Two balls are released from the same height. Ball A is released on the surface of Earth,
    7·1 answer
  • An object traveling at a constant speed but with a changing direction is accelerating.
    8·2 answers
  • If you could repeat the lab and make it better, what would you do differently and why? There are always ways that labs can be im
    9·2 answers
  • What is measurement​
    5·2 answers
  • Answers? I’m very bad in physics
    15·1 answer
  • A 15 m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60° angle with horizontal. (a) Find t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!