Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.
Answer:
C
Explanation:
Usually when you are at the bottom you are at peak speed. It also shows that Kinetic Energy is the green bar and in picture C the green bar is highest.
DEFINITION:::::;;The type of reactions in which energy is releases to the environment are called Exothermic reactions.
EXAMPLE::: formation of carbon dioxide and urea formation are actually the examples of exothermic reaction..
Hope it helps
Answer: The answer is D
Explanation: i had the same question and i just guessed and got it first try
Assume no air resistance, and g = 9.8 m/s².
Let
x = angle that the initial velocity makes with the horizontal.
u = 30 cos(x), horizontal velocity
v = 30 sin(x), vertical launch velocity
The horizontal distance traveled is 55 m, therefore the time of flight is
t = 55/[30 cos(x)] = 1.8333 sec(x) s
With regard to the vertical velocity, and the time of flight,obtain
[30 sin(x)]*(1.8333 sec(x)) + (1/2)*(-9.8)*(1.8333 sec(x))² = 0
55 tan(x) - 16.469 sec²x = 0
55 tan(x) - 16.469[1 + tan²x] = 0
16.469 tan²x - 55 tan(x) + 16.469 = 0
tan²x - 3.3396 tan(x) + 1 = 0
Solve with the quadratic formula.
tan(x) = 0.5[3.3396 +/- √(7.153)] = 3.007 or 0.3326
Therefore
x = 71.6° or x = 18.4°
The time of flight is
t = 1.8333 sec(x) = 5.8096 s or 1.932 s
The initial vertical velocity is
v = 30 sin(x) = 28.467 m/s or 9.468 m/s
The horizontal velocity is
u = 30 cos(x) = 9.467 m/s or 28.469 m/s
If t = 5.8096 s,
u*t = 9.467*5.8096 = 55 m (Correct)
or
u*t = 28.469*15.8096 = 165.4 m (Incorrect)
Therefore, reject x = 18.4°. The correct solution is
t = 5.8096 s
x = 71.6°
u = 9.467 m/s
v = 28.467 m/s
The height from which the ball was thrown is
h = 28.467*5.8096 - 0.5*9.8*5.8096² = -110.4 m
The ball was thrown from a height of 110.4 m
Answer: h = 110.4 m