

Multiply eq(1) by 2 and eq(2) by 1




Now
Put in eq(1)






9. ¹/₃(x + 6) = 8
¹/₃(x) + ¹/₃(6) = 8
¹/₃x + 2 = 8
<u> - 2 - 2</u>
3 · ¹/₃x = 6 · 3
x = 18
15. ¹/₅(x + 10) = 6
¹/₅(x) + ¹/₅(10) = 6
¹/₅x + 2 = 6
<u> - 2 - 2</u>
5 · ¹/₅x = 4 · 5
x = 20
20. ¹/₈(24x + 32) = 10
¹/₈(24x) + ¹/₈(32) = 10
3x + 4 = 10
<u> - 4 - 4</u>
<u>3x</u> = <u>6</u>
3 3
x = 2
32. 5 - ¹/₂(x - 6) = 4
5 - ¹/₂(x) - ¹/₂(-6) = 4
5 - ¹/₂x + 3 = 4
5 + 3 - ¹/₂x = 4
8 - ¹/₂x = 4
<u>- 8 - 8</u>
-2 · (-¹/₂x) = -4 · (-2)
x = 8
33. ²/₃(3x - 6) = 3
²/₃(3x) - ²/₃(6) = 3
2x - 4 = 3
<u> + 4 + 4</u>
<u>2x</u> = <u>7</u>
2 2
x = 3¹/₂
Width =3.5, length = 4
Let's make a few equations to summarize what we know.:
a = 14
l = 2w -3
a = wl
Now let's substitute the expression for l into the expression for area and solve.
a = w(2w - 3)
a = 2w^2 - 3w
14 = 2w^2 - 3w
0 = 2w^2 - 3w - 14
which factors into
(2w - 7) (w + 2)
Solving for w
2w - 7 = 0
2w = 7
w = 3.5
w+2 = 0
w = -2
So w can be either 3.5 or -2. Since a negative width doesn't make sense, w = 3.5
Let's verify
w = 3.5
l = 2w - 3
l = 2*3.5 - 3
l = 7 - 3
l = 4
a = wl
a = 3.5 * 4
a = 14
So the width is 3.5 and the length is 4.
<span>1.2555⋅<span>10^<span>−<span>6
</span></span></span></span>Explanation:
<span><span><span>(1.08⋅<span>20<span>−3</span></span>)</span><span>(9.3⋅<span>10<span>−3</span></span>)</span>=<span>1.08<span><span>(20)</span>3</span></span>⋅<span>9.3<span><span>(10)</span>3</span></span>=<span><span>1.08⋅9.3</span><span>8⋅<span>106</span></span></span>=1.2555</span><span>⋅<span>10<span>−6</span></span></span></span>