Hey there,
Question #1The answer would be in the attachment below.
_____________________________________________________________
Question #2
The answer would be in the attachment below.
_____________________________________________________________
Question #3The answer would be in the attachment below.
_____________________________________________________________
Question 4#
The last one was kind of tricky. But, as I saw this attachment, I noticed on how the rectangle was actually 3/4 on the base and for the height, it was 1/2. So by doing this,we need to find the area, and we would multiply these both. 1/2 x 3/4 = 3/8 but by looking at your options, those are not simplified so . . .your answer would be 6/16 because 3x2=6 & 8x2=16.
_____________________________________________________________
I really hope this can help you
Amanda.Have a great day! =)
~Jurgen
Answer:
2 pi
Step-by-step explanation:
The radius is 2
The area of a circle is
A = pi r^2
We have 1/2 of a circle so
1/2 A = 1/2 pi r^2
=1/2 pi ( 2)^2
=1/2 pi *4
= 2 pi
Answer:
39%
Step-by-step explanation:
Answer:
True, 3 tenths is closer to one whole
Step-by-step explanation:
↓ ↓
Answer:
a) W₁ = 78400 [J]
b)Wt = 82320 [J]
Step-by-step explanation:
a) W = ∫ f*dl general expression for work
If we have a chain with density of 10 Kg/m, distributed weight would be
9.8 m/s² * 10 kg = mg
Total length of th chain is 40 m, and the function of y at any time is
f(y) = (40 - y ) mg where ( 40 - y ) is te length of chain to be winded
At the beggining we have to wind 40 meters y = 0 at the end of the proccess y = 40 and there is nothing to wind then:
f(y) = mg* (40 - y )
W₁ = ∫f(y) * dy ⇒ W₁ = ∫₀⁴⁰ mg* (40 - y ) dy ⇒ W₁ = mg [ ∫₀⁴⁰ 40dy - ∫₀⁴⁰ ydy
W₁ = mg [ 40*y |₀⁴⁰ - 1/2 * y² |₀⁴⁰ ⇒ W₁ = mg* [ 40*40 - 1/2 (40)² ]
W₁ = mg * [1/2] W₁ = 10*9,8* ( 800 )
W₁ = 78400 [J]
b) Now we can calculate work to do if we have a 25 block and the chain is weightless
W₂ = ∫ mg* dy ⇒ W₂ = ∫₀⁴⁰ mg*dy ⇒ W₂ = mg y |₀⁴⁰
W₂ = mg* 40 = 10*9.8* 40
W₂ = 3920 [J]
Total work
Wt = W₁ + W₂ ⇒ Wt = 78400 + 3920
Wt = 82320 [J]