Explanation:
1. Acceleration is the change in velocity over time.
a = Δv / Δt
a = (29.8 m/s − 37.1 m/s) / 3 s
a = -2.43 m/s²
2. Work equals force times distance.
W = Fd
W = (87.3 N) (2.04 m)
W = 178 J
3. Power is work per time.
P = W / t
267 W = 1250 J / t
t = 4.68 s
Answer:
Car has more power output than crane
Explanation:
We have given that mass of the crane m = 1000 kg
Height through which crane lift the steel beam h = 10 m
Acceleration due to gravity 
So work done by crane 
Time period is given as t = 5 sec
We know that power 
Now mass of the car = 1000 kg
Initial velocity u = 0 m /sec
Final velocity v = 10 m/sec
We know that work done is equal to the change in kinetic energy
So work done 

Time ids given as t = 2 sec
So power 
So car has more power output than crane
Chemical energy. Elimination is useful to answer this question.
A heavy weight suspended within a moving box needs to overcome inertia, resulting in a slight delay in the motion of the weight after the box moves. <u>Option B.</u>
<u />
The principle underlying the construction of a seismometer is to have a heavy weight suspended from a spring on a pedestal or inside a movable box. A seismograph is an instrument that records and measures the details of an earthquake. A seismograph uses a seismograph to record data.
Elastic deformation bends an object, whereas repulsion returns it to its original shape. This instrument is nothing more than an oscillating rod or pendulum that begins to vibrate when a tremor occurs. The vibration system has a pin. The pen records seismic waves on a sheet of paper that moves underneath. By studying these waves scientists can create a complete map of earthquakes.
Learn more about Seismograph construction here:-brainly.com/question/16047884
#SPJ4