Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
Answer:
His kinetic energy increases, potential energy decreases
The sum of kinetic and potential energy is a constant at any instant before he comes to rest.
Explanation:
Snowboarder is starting from a height and moving to the down direction. As he moves down his velocity increases, we know that kinetic energy is given by the expression
, so as he moves his kinetic energy increases.
When the snowboarder is starting his potential energy is maximum(Potential energy = mgh), as he comes down his potential energy decreases.
Based on this we can conclude that the sum of potential energy and kinetic energy is a constant at any instant for a snowboarder before he comes to rest.
mgh+
= Constant
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
Answer:
A is the answer. Im only 12 and i hope this explanation helps you.
Explanation:
Lenz's Law of Electromagnetic Induction. Faraday's Law tells us that inducing a voltage into a conductor can be done by either passing it through a magnetic field, or by moving the magnetic field past the conductor and that if this conductor is part of a closed circuit, an electric current will flow.
"<span>An atom is the smallest unit of matter and an element is a pure substance that is made of identical atoms" is correct. Although atoms can be broken down further now, it still take a whole atom to make an element. </span>