Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
<u>Answer:</u>
The matter does not move in solid state but vibrates.
<u>Explanation:</u>
The atoms inside the matter cannot move or shift their positions without any external force but makes some small vibration movements. Generally in solids, the particles are bound by the attractive forces acting in between the atoms inside the matter.
The small vibrations that are happening inside the matter are because of the external factors like temperature. The increase in temperature raises the kinetic energy of the atoms inside and makes them move faster and this results in the vibration of the matter.
One thing I think we must put in the capsule is our pictures. Very necessary, so that other inhabitants would see how we look like.
Maintenance spanner are needed in great numbers to service all sorts of technical equipment
Answer:
C)T
Explanation:
The period of a mass-spring system is:

As can be seen, the period of this simple harmonic motion, does not depend at all on the gravitational acceleration (g), neither the mass nor the spring constant depends on this value.