1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semmy [17]
3 years ago
7

Give a paragraph on how to become a better leader

Physics
1 answer:
riadik2000 [5.3K]3 years ago
4 0

Answer:

Anyone can sit in a corner office and delegate tasks, but there is more to effective leadership than that. Effective leaders have major impacts on not only the team members they manage, but also their company as a whole. Employees who work under great leaders tend to be happier, more productive and more connected to their organization – and this has a ripple effect that reaches your business's bottom line

Explanation:

:)

You might be interested in
Which of the following is an example of potential energy? (2 points)
gizmo_the_mogwai [7]

Answer: The correct answer is (a).

Explanation:

The potential energy is due to the position of the object.

The kinetic energy is due to the motion of the object.

In the case of a basketball sitting on a shelf, the basketball posses the potential energy due to some height.

In the case of a dog running across a field, a dog has kinetic energy due to its motion.

In a case of a bowling ball rolling down a lane, there is kinetic energy due to the motion of the bowling ball.

In the case of a teenager riding their bike, there is kinetic energy due to the motion of the bike.

Therefore, the correct answer is (a).

6 0
3 years ago
The weight of a body floating in a liquid is​
djverab [1.8K]

Answer:

The apparent weight is the weight of the body minus the weight of the liquid displaced. The body will float only when both the weights are same. In this case, the given body of weight W is floating and hence the apparent weight is zero.

4 0
3 years ago
Read 2 more answers
When electricity moves through a metal wire, the wire is
ivolga24 [154]

Answer:

A conductor

Explanation:

A conductor

3 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Which option below best explains why the second law of thermodynamics is
Llana [10]

''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.

<h3>What is Second Law of Thermodynamics?</h3>

The Second Law of Thermodynamics says that "in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than the energy of the initial state."

So we can conclude that ''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.

Learn more about law here: brainly.com/question/820417

#SPJ1

7 0
2 years ago
Other questions:
  • Someone who’s good at physics help please :)
    12·1 answer
  • The speed of sound in air on a certain stormy day is about 1130 feet per second. you see a flash of lightning striking some dist
    7·1 answer
  • Which of the following is a good example of a physical change?
    10·1 answer
  • Stronger acids have more _______
    15·1 answer
  • A bumblebee carries pollen from the male portion of a plant to the female portion of the same flower. Fertilization occurs. Whic
    12·1 answer
  • Matching the words to the definitions <br> HELPPP
    12·2 answers
  • Two cars move at different velocities. Car A moves at a speed of 90 km/hr while Car B moves
    11·1 answer
  • What type of liquid would never freeze
    11·2 answers
  • Question 1
    13·1 answer
  • Using my raw survival instincts, I am trying to catch a trout from a stream with my bare hands. Despite my exceptional reflexes
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!