Answer:
60.18 N
Explanation:
Given that:
The force applied on the sled = 100 N
Suppose, the angle between the sled rope and the ground = 53°
The horizontal force which acts in the horizontal direction can be expressed as:



But if the angle between the sled rope is parallel to the ground. Then, we use an angle on a straight line which is = 180°


= 100 × -1
= -100 N
The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s
The total energy equation would be Kinetic energy+Potential energy
False. What actually determines the properties of elements are the electrons, or aka valence electrons. They are used to bond, which determines its properties.