1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
13

In old western movies, cowboys often would put their ear to a train track to listen for an oncoming train. What benefit would th

is method provide over listening for a train by listening for sound through the air?
Physics
1 answer:
SVEN [57.7K]3 years ago
6 0

Answer:

Because the sound travels faster in solids

Explanation:

Sound waves are mechanical waves, produced by the oscillations of the particles in a medium. The particles vibrate back and forth along the direction of propagation of the wave (longitudinal waves).

The speed of a sound wave depends on several factors, such as the density of the medium. In particular, the higher the density, the higher the speed of the wave, because in denser mediums the particles are more close to each other, so the transmission of the wave is more efficient since it can be transmitted better through the colliding particles.

For this reason, a sound wave travels faster in solids, and slower in gases.

Therefore in this problem, the sound of the oncoming train travels faster through the rail track (which consists of solids), rather than the air (which is a gas), so by putting the ear next to the track, it is possible to hear the sound of the train coming before the sound is heard in air.

You might be interested in
In the water cycle, which state of matter has the particles closest together?
Dmitry [639]
No, options are given but I believe the answer would be
In a water cycle Solid state of matter has the particles closest together.
4 0
3 years ago
Read 2 more answers
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
Pluto has been reassigned and is now a dwarf planet. Why did scientists think this reassignment was necessary? If you were a sci
kap26 [50]

Answer:

Explanation:

we humans have our own ify classification for celestial objects, most people are saddened that pluto is not a planet anymore altho it hasn't changed at all.

scientist say that if an object is going to be considered a planet it must fill in these three checkboxes:

You must be spherical, you must orbit a star, and you must have already cleared your path or debris.

Pluto fills in the first two boxes but it does orbit in the keyperbelt and there are 5 other objects just like it. this is why pluto has been dubbed a dwarf planet.

6 0
2 years ago
Read 2 more answers
The lawn sprinkler consists of four arms that rotate in the horizontal plane. The diameter of each nozzle is 8 mm, and the water
sashaice [31]

Answer: the constant angular velocity of the arms is 86.1883 rad/sec

Explanation:

First we calculate the linear velocity of the single sprinkler;

Area of the nozzle = π/4 × d²

given that d = 8mm = 8 × 10⁻³

Area of the nozzle = π/4 × (8 × 10⁻³)²

A = 5.024 × 10⁻⁵ m²

Now total discharge is dived into 4 jets so discharge for single jet will be;

Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec

So using continuity equation ;

Q_single = A × V_single

V_single = Q_single/A

we substitute

V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)

V_single = 29.8566 m/s

Now resolving the forces as shown in the second image,

Vt = Vcos30°

Vt = 29.8566 × cos30°

Vt = 25.8565 m/s

Finally we calculate the angular velocity;

Vt = rω

ω_single = Vt / r

from the given diagram, radius is 300mm = 0.3m

so we substitute

ω_single = 25.8565 / 0.3

ω_single = 86.1883 rad/sec

Therefore the constant angular velocity of the arms is 86.1883 rad/sec

7 0
2 years ago
While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b)
ArbitrLikvidat [17]

Answer:

a) See attached picture, b) We know the initial velocity = 0, initial position=0, time=12.0s, acceleration=2.40m/s^{2}, c) the car travels 172.8m in those 12 seconds, d) The car's final velocity is 28.8m/s

Explanation:

a) In order to draw a sketch of the situation, I must include the data I know, the data I would like to know and a drawing of the car including the direction of the movement and its acceleration, just like in the attached picture.

b) From the information given by the problem I know:

initial velocity =0

acceleration = 2.40m/s^{2}

time = 12.0 s

initial position = 0

c)

unknown:

displacement.

in order to choose the appropriate equation, I must take the knowns and the unknown and look for a formula I can use to solve for the unknown. I know the initial velocity, initial position, time, acceleration and I want to find out the displacement. The formula that contains all this data is the following:

x=x_{0}+V_{x0}t+\frac{1}{2}a_{x}t^{2}

Once I got the equation I need to find the displacement, I can plug the known values in, like this:

x=0+0(12s)+\frac{1}{2}(2.40\frac{m}{s^{2}} )(12s)^{2}

after cancelling the pertinent units, I get that  my answer will be given in meters. So I get:

x=\frac{1}{2} (2.40\frac{m}{s^{2}} )(12s)^{2}

which solves to:

x=172.8m

So the displacement of the car in 12 seconds is 172.8m, which makes sense taking into account that it will be accelerating for 12 seconds and each second its velocity will increase by 2.4m/s.

d) So, like the previous part of the problem, I know the initial position of the car, the time it travels, the initial velocity and its acceleration. Now I also know what its final position is, so we have more than enough information to find this answer out.

I need to find the final velocity, so I need to use an equation that will use some or all of the known data and the unknown. In order to solve this problem, I can use the following equation:

a=\frac{V_{f}-V_{0} }{t}

Next, since I need to find the final velocity, I can solve the equation just for that, I can start by multiplying both sides by t so I get:

at=V_{f}-V_{0}

and finally I can add V_{0} to both sides so I get:

V_{f}=at+V_{0}

and now I can proceed and substitute the known values:

V_{f}=at+V_{0}

V_{f}=(2.40\frac{m}{s^{2}}} (12s)+0

which solves to:

V_{f}=28.8m/s

8 0
3 years ago
Read 2 more answers
Other questions:
  • Study this equation carefully. What classification should this reaction have? Cu + 2AgNO3 Cu(NO3)2 + 2Ag synthesis decomposition
    10·2 answers
  • You have a mixture of substances with diifferent sized molecules. How could you seperate them?
    12·2 answers
  • What is the speed of sound at sea level?
    13·1 answer
  • Electrical current in a wire
    7·1 answer
  • One way to describe a wave crest is the amount of ___________ applied over an area.
    5·2 answers
  • Will give 30 point!!!!
    8·1 answer
  • What part of the diagram is labeled by the number 3?
    7·1 answer
  • 3 A picture is supported by two vertical strings; if the weighi
    9·1 answer
  • a student places 8 similar coins in a pile . the height of the pile of coins is 2.4 cm calculate the average thickness of one co
    12·1 answer
  • A bowler once measured that she can throw the bowling ball with a speed of 15miles/hour.If it takes 3 seconds from the ball to t
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!