The formula for energy release per kilogram of fuel burned is energy release per kg=6.702*10-13. and 19. J 1 Mev = 1.602 X 10 T
Calculate the energy in joules per kilogram of reactants given MeV per reaction. Energy is the ability or capacity to perform tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
Think of a mole of plutonium-239 (molar mass: 239 grams) as a mole of "reactions."
Energy used in the US per person annually = 3-5 X 1011
Population (number of people) = 3.108The required mass of the fuel is 3.5x1011 x3-1x10 8x 10)/6.703 X1013 kg. the mass required: 1.62 x 1033 kg Mev in Joules 6 is equal to 101.60*I0-
19. J 1 Mev = 1.602 X 10 T, which translates to 1.602*1013/2.39x10-3 energy release per kilogram, or 6.702*10-13.
To learn more about Energy please visit -
brainly.com/question/27671072
#SPJ1
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Density is defined as (mass) per unit (volume). So in order to calculate
the density of a glob of some substance, you pretty much have to measure
its mass and its volume.
Answer:
It takes millions sometimes hundreds of millions Explanation:
Answer: An equation is missing in your question below is the missing equation
a) ≈ 8396
b) 150 nm/k
Explanation:
<u>A) Determine the number of Oscillators in the black body</u>
number of oscillators = 8395
attached below is the detailed solution
<u>b) determine the peak wavelength of the black body </u>
Black body temperature = 20,000 K
applying Wien's law / formula
λmax = b / T ------ ( 1 )
T = 20,000 K
b = 3 * 10^6 nm
∴ λmax = 150 nm/k