1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
5

While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b)

List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, then indicate how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s final velocity? Solve for this unknown in the same manner as in (c), showing all steps explicitly

Physics
2 answers:
ArbitrLikvidat [17]3 years ago
8 0

Answer:

a) See attached picture, b) We know the initial velocity = 0, initial position=0, time=12.0s, acceleration=2.40m/s^{2}, c) the car travels 172.8m in those 12 seconds, d) The car's final velocity is 28.8m/s

Explanation:

a) In order to draw a sketch of the situation, I must include the data I know, the data I would like to know and a drawing of the car including the direction of the movement and its acceleration, just like in the attached picture.

b) From the information given by the problem I know:

initial velocity =0

acceleration = 2.40m/s^{2}

time = 12.0 s

initial position = 0

c)

unknown:

displacement.

in order to choose the appropriate equation, I must take the knowns and the unknown and look for a formula I can use to solve for the unknown. I know the initial velocity, initial position, time, acceleration and I want to find out the displacement. The formula that contains all this data is the following:

x=x_{0}+V_{x0}t+\frac{1}{2}a_{x}t^{2}

Once I got the equation I need to find the displacement, I can plug the known values in, like this:

x=0+0(12s)+\frac{1}{2}(2.40\frac{m}{s^{2}} )(12s)^{2}

after cancelling the pertinent units, I get that  my answer will be given in meters. So I get:

x=\frac{1}{2} (2.40\frac{m}{s^{2}} )(12s)^{2}

which solves to:

x=172.8m

So the displacement of the car in 12 seconds is 172.8m, which makes sense taking into account that it will be accelerating for 12 seconds and each second its velocity will increase by 2.4m/s.

d) So, like the previous part of the problem, I know the initial position of the car, the time it travels, the initial velocity and its acceleration. Now I also know what its final position is, so we have more than enough information to find this answer out.

I need to find the final velocity, so I need to use an equation that will use some or all of the known data and the unknown. In order to solve this problem, I can use the following equation:

a=\frac{V_{f}-V_{0} }{t}

Next, since I need to find the final velocity, I can solve the equation just for that, I can start by multiplying both sides by t so I get:

at=V_{f}-V_{0}

and finally I can add V_{0} to both sides so I get:

V_{f}=at+V_{0}

and now I can proceed and substitute the known values:

V_{f}=at+V_{0}

V_{f}=(2.40\frac{m}{s^{2}}} (12s)+0

which solves to:

V_{f}=28.8m/s

Serhud [2]3 years ago
5 0

Answer:

Explanation:

initial velocity, u = 0 m/s

acceleration, a = 2.4 m/s^2

time, t = 12 s

(a) Diagram is attached

(b) The unknown variables are distance traveled s and the final velocity v.

(c) Use second equation of motion

s = ut + \frac{1}{2}at^{2}

s = 0 x 12 + 0.5 x 2.4 x 12 x 12

s = 172.8 m

thus, the distance traveled is 172.8 m.

(d) Use first equation of motion

v = u + at

v = 0 + 2.4 x 12

v = 28.8 m/s

Thus, the final velocity of the car is 28.8 m/s.

You might be interested in
The top of the cylinder head is sealed by the
svetlana [45]
The common name is valve cover, so the correct answer is A.
3 0
4 years ago
Read 2 more answers
Early experiments with light were understood by explaining the behavior of light in terms of waves. Which experimental result re
STALIN [3.7K]
The answer to what experimental result required considering the particle nature of light is A. The ultraviolet catastrophe of blackbody radiation.
8 0
3 years ago
Explain why incremental development is the most effective approach for developing business software systems. Why is this model l
Ksenya-84 [330]

Explanation:

Typically, business software technologies are complex, and software strenuous. Business software applications are also often upgraded for changes in business goals or procedures. Real-time systems usually require a lot of hardware components that are quite difficult to change and cannot be upgraded Usually, actual-time safety critical systems that required to be built based on well-planned processes.

3 0
3 years ago
The rhinestones in costume jewelry are glass with index of refraction 1.50. to make them more reflective, they are often coated
nevsk [136]
What is he minumum coating of thickness needed to ensure that lifght of waveelntght 5660 mbnd si
7 0
3 years ago
If you were to move to the Canadian North Woods, what adaptations or behavioral changes would you make?
iragen [17]

Adaptation will mean taking action to minimize the negative effects of change. ... the use of new tools and techniques for decision-making, For example, projected increases in drought, fire, windstorms, and insect and disease outbreaks are expected to result in greater tree mortality. Fewer trees will reduce Canada’s timber supply, which in turn will affect the economic competitiveness of Canada’s forest industry. This would leave forestry-dependent communities vulnerable to job losses, closure of forestry processing facilities and an overall economic slump.

5 0
3 years ago
Other questions:
  • Which planet is most likely to have acid rain? A. Mercury B. Venus C. Mars D. Uranus
    13·1 answer
  • Based on Newtons law of universal gravitation, complete the following table.
    15·2 answers
  • How does a dynamo work
    9·1 answer
  • Question 9(Multiple Choice Worth 2 points)
    5·1 answer
  • An electron is moving east in a uniform electric field of 1.47 {\rm N/C} directed to the west. At point A, the velocity of the e
    7·1 answer
  • You want to create a device that sends signals to your dog to stop barking. which type of electromagnetic wave would be most use
    14·1 answer
  • How to find the mechanical advantage
    10·2 answers
  • A sprinter accelerates from rest to a top speed of 24 km/h in 2 seconds and then runs at a constant velocity for the rest of the
    5·1 answer
  • A 200g air-track glider is attached to a spring. The glider is pushed in 10cm and released. A student with a stopwatch finds tha
    9·1 answer
  • Use the energy equation from this week’s notes, your answer from
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!