This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Current will be
now just pluf in the values and Voila..
Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:
Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:
We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:
The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:
F= 3,104 N
The force required is 3,104 N
S s. S s abbs s sbsbs z sbs