Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s.
The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
Answer:
Technician A
Explanation:
It is seen that a tire pressure will increase or decrease 1 psi for each
change in temperature.
For Technician B vehicle pressure should not be adjusted after tire has been warmed as the warm air may increase the pressure but it will be auto adjusted as the temperature falls to normal .
Answer:
D) 763 nm
Explanation:
Calculation for the wavelength of light
Using this formula
Wavelength of light=Delta Y*Distance / Length
Where,
Delta Y represent the 2nd order bright fringe
Length represent the distance between both the slits and the screen
Distance represent the Distance between the slits
Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)
Now Let plug in the formula
Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters
Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters
Wavelength of light =(0.0000168m/2.2m)*10^-7 meters
Wavelength of light =7.63 *10^-7 meters
Wavelength of light =763 nm
Therefore the Wavelength of light will be 763 nm
It's one of your hands. Which one it is depends on how you sweep.
-- If you hold the top of the stick motionless and wave your bottom hand
back and forth, then your top hand is the fulcrum, and you're using the
broom as a Class-3 lever.
-- If you hold your bottom hand motionless and wiggle the top end of the
broom back and forth with your top hand, then your lower hand is the fulcrum,
and you're using the broom as a Class-1 lever.