Answer:
The atom becomes a positively charged ion.
Explanation:
- The building blocks of an atom are protons, neutrons, and electrons.
- The protons and neutrons present in the core of the atom are called nucleus.
- The electrons are scattered in an ordered way around the nucleus.
- The protons are positively charged and the electrons are negatively charged particles. The neutrons do not possess any charges.
- Binding energy is supplied to the atom to remove an electron.
- It is possible to remove the electrons of the lighter elements.
- When an electron is removed from the hydrogen atom. It becomes positively charged ion or simply proton.
- When all of the electrons are removed from the helium atom, it becomes a positively charged α particle.
- It is practically very difficult to remove all of the electrons from the heavier elements.
- When all of the electrons are removed from an atom it becomes an unstable positively charged ion.
Answer: the expanding universe
Explanation:
Hope that helps!

where:
F - force
m - mass
a - acceleration
We transform this formula to get a:

Answer:
The swimmer has a distance traveled of 800 meters.
The final displacement of the swimmer is 0 meters.
Explanation:
A lap is a round trip made by a swimmer in the pool, so that the distance traveled by swimmer is sixteen times the length of the swimming pool. That is:


A swimmer has a distance traveled of 800 meters.
The displacement is the distance between swimmer and a reference point, let suppose that reference point is located at the beginning of the first lap. Hence, the final displacement of the swimmer is 0 meters.
Answer:
resistor R₂ has the lowest current density
Explanation:
The current density is
j = I / A
now let's analyze each case
a) R₂ has an area 2A₀ and a length L₀ that R₁
b) R₃ has an area Ao and a length 3L₀ what R₁
we can see that all the area is given in relation to the resistance R₁
the current density in R₁ is
j₁ = I / A₀
the current density in R₂
j₂ = I / 2A₀
j₂ 2 = ½ I/A₀
the current density in R₃
j₃ = I / A₀
j₂ < j₁ = j₃
therefore resistor R₂ has the lowest current density