Answer:
so his far point according to this pair of glass is 200 cm
Explanation:
power of old pair of corrective glasses is given as

now we have



now we know that for normal vision the maximum distance of vision is for infinite distance
so by lens formula we have



so his far point according to this pair of glass is 200 cm
Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

=
= 3658.836 lb.in
=
lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

= 
= 3334.8 lb.in
=
lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

= 
= 4023.061 lb. ft/s
=
hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

= 
= 3666.804 lb.ft /s
=
hp
= 6.667 hp
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°