The nuclei of atoms become unstable when the repelling forces of the protons cannot be balanced by the number of neutrons in the nucleus. It then re-arranges itself randomly to a more stable configuration by emitting any of a series of particles. During radioactive decay, an atom does not collapse.
Since an atom is mostly empty space - that is it’s nucleus is relatively distant from the electron shells so, in the presence of extreme forces such as gravity inthe collapse of a large star, the inward pressures on the atom overcome the natural balance of the atomic structure and the ‘empty space’ disappears as nuclei are mashed together by the intense pressures and a neutron star is formed. Under even more external pressure, even the neutron star can collapse to form a black hole.
Answer:
Actually, one of the more interesting organisms at those depths is the Xenophyophore, a creature which, despite being single-celled, can grow to be over 10 centimeters wide. "Scientists say xenophyophores are the largest individual cells in existence.
Explanation:
Answer:
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Explanation:
Hello there!
In this case, since the integrated rate law for a second-order reaction is:
![[SO_3]=\frac{[SO_3]_0}{1+kt[SO_3]_0}](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B%5BSO_3%5D_0%7D%7B1%2Bkt%5BSO_3%5D_0%7D)
Thus, we plug in the initial concentration, rate constant and elapsed time to obtain:
![[SO_3]=\frac{1.44M}{1+14.1M^{-1}s^{-1}*0.240s*1.44M}\\\\](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B1.44M%7D%7B1%2B14.1M%5E%7B-1%7Ds%5E%7B-1%7D%2A0.240s%2A1.44M%7D%5C%5C%5C%5C)
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Best regards!
Answer:
the process in which energy is emitted by one object, transmitted through space, and absorbed by another
Explanation:
Radiation is energy that comes from a source and travels through space and may be able to penetrate various materials. Light, radio, and microwaves are
types of radiation that are called nonionizing.