boyles law states that the volumes of a gas will decrease as pressure increases if the temperature remains constant.
charles law states that the volume of a gas will increase as temp increases if the pressure remains constant.
gay-lussacs law states that the pressure increases as temp increases if the volume remains constant.
Answer: <span>A-Ce is oxidized because it is losing electrons and Cu is reduced because it is gaining electrons</span><span>.
</span>There are two reactions in the equation, oxidation and reduction. A molecule that oxidized will lose electrons while the molecule that reduced will gain electrons. In this case, Cu2+ changed into Cu which means its oxidation number reduced from +2 into 0. Ce oxidation number increased from 0 into +3
I think it would lose its heat faster than the plastic bags because of higher conductivity feature.
<h3>What is conduction?</h3>
Conduction is the process in which heat or electricity is transmitted or transferred through the material of a substance without movement of the material.
We know that metals are good conductors so we can conclude that it would lose its heat faster than the plastic bags bof higher conductivity feature.
Learn more about heat here: brainly.com/question/13439286
Answer:
<em><u>To determine the number of significant figures in a number use the following 3 rules:</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.A final zero or trailing zeros in the decimal portion ONLY are significant.</u></em>
Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol