Answer:
Number of moles of Fe = 10 mol
Number of moles of CO₂ = 15 mol
Explanation:
Given data:
Number of moles of iron oxide = 5 mol
Number of moles of carbon monoxide = 25 mol
Number of moles of product = ?
Solution:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of reactant with product.
Fe₂O₃ : Fe
1 : 2
5 : 2×5 = 10 mol
Fe₂O₃ : CO₂
1 : 3
5 : 3×5 = 15 mol
CO : Fe
3 : 2
25 : 2/3×25 = 16.7 mol
CO : CO₂
3 : 3
25 : 25
Less number of moles of Fe and CO₂ are formed by iron oxide thus it will act as limiting reactant while CO is inn excess.
To convert from moles to grams you divide by the molar mass of the element. To convert from grams to moles you X by the molar mass element
Answer:
Pure substance B) Consists of a single element or type of compound.
Homogeneous A) Mixture that has its different components mixed evenly within the substance.
Heterogeneous D) Mixture that has its different components mixed unevenly within the substance.
Solution C) Liquid homogeneous mixture in which the solute is distributed evenly within the solvent.
Explanation:
Pure substances are a form of matter with definite constant composition and distinct properties. They consist of a single element or type of compound, as can be seen in its formula. Na, O₂, NaCl and H₂O are examples of pure substances.
When 2 or more pure substances are mixed together they form a mixture. If the mixture has its different components mixed <u>evenly</u> within the substance it is a homogeneous mixture. Whereas if the mixture has its different components mixed <u>unevenly</u> within the substance it is a heterogeneous mixture. The different parts observable in a heterogeneous mixture are known as phases.
In liquid homogeneous mixtures, we can recognize one or more substances that are in lower proportions (solutes) and one substance that is in greater proportion (solvent). This kind of mixture is known as a solution.
Answer:
Heat or Thermal energy, Solar Energy, Chemical energy, electrical energy, mechanical energy
Explanation:
Answer:
D. 4
Explanation:
Answer and Explanation: Carbon can form a maximum of four covalent bonds. Carbon can share up to four pairs of electrons, therefore, the carbon atom fills its outer energy level and achieves chemical stability.