The balanced half-reaction for the product that forms at anode is Fe⁺² + 2e⁻ → Fe(s) and 2H₂O + 2e⁻ → H₂ + 2OH⁻, the product that forms at cathode is 2I⁻ → I₂ + 2e- and 2H₂O → O₂ + 4H⁺ + 4e⁻
<h3>What is Balanced Chemical Equation ?</h3>
The equation during which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation is called balanced chemical equation.
Now write the equation for FeI₂
At cathode:
Fe⁺² + 2e⁻ → Fe(s) Eo = - 0.44 V
2H₂O + 2e⁻ → H₂ + 2OH⁻ Eo = - 0.827 V
It is easy to decrease Fe⁺² ions than the water, the product which is formed at cathode is Iron.
At anode:
2I⁻ → I₂ + 2e- Eo = - 0.54 V
2H₂O → O₂ + 4H⁺ + 4e⁻ Eo = -1.23 V
O₂ gas formed at anode.
Thus from the above conclusion we can say that The balanced half-reaction for the product at anode is Fe⁺² + 2e⁻ → Fe(s) and 2H₂O + 2e⁻ → H₂ + 2OH⁻, the product that forms at cathode is 2I⁻ → I₂ + 2e- and 2H₂O → O₂ + 4H⁺ + 4e⁻.
Learn more about the Balanced chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
botany because a maple tree is a plant
Explanation:
The question is incomplete , the complete question is;
The mass of each Wt isotope is measured relative to C-12 and tabulated below. Use the mass of C-12 to convert each of the masses to amu and calculate the atomic mass of Wt.
Wt-296 = 24.6622
Answer:
The atomic mass of Wt-296 is 195.9464 amu.
Explanation:
1 amu is defined as 1 by twelfth of the carbon-12 mass.
Mass of an isotope Wt-296 = 24.6622
Mass of an isotope Wt-296 in amu = M


The atomic mass of Wt-296 is 195.9464 amu.
The joules required to heat 2L of water in a pot from 20 c to the boiling point of water is calculated using the following formula
Q= MC delta T
M = mass = density x volume( 2 x 1000= 2000ml)
M = 1g/ml x2000 ml = 2000g
C = specific heat capacity = 4.18 g/c
delta T = change in temperature = 100 c ( boiling point of water) - 20 c = 80 c
Q is therefore = 2000 g x 4.18 j/g c x 80c = 668800j