Answer:
moles = no. of molecules / Avogadro's number
= 2.26 x 10^33 / 6.022 x 10^23
= 3752906011
Round to significant figures which is 3 = 3.75 x 10^9 mol
Explanation: The formula for finding how many moles of a substance when given the amount of molecules is: moles = number of molecules / Avogadro's number
Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



Answer:
(iii) A has pH greater than 7 and B has pH less than 7
Explanation:
Phenolphthalein is a common indicator in acid base titrations. It turns pink in basic conditions and turns colorless in acidic conditions. Thus on addition of solution A it becomes pink so A should be basic having pH more than 7. On addition of B , it turn out to be colorless means that B is an acidic solution having pH less than 7.
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.