The suggestion is to prevent a puddle of the liquid present in the sample from forming or from it leaking on to the surface on which it is placed. For example, if precipitates of a solid are removed from water and then placed on filter paper to dry, the water will soak into the filter paper and then leak on to the counter on which it is placed. If this precipitate were placed in a watch glass or weighing paper, the water would only evaporate and would not contaminate the sample.
Species are the smallest groups. A species consists of all the animals of the same type, who are able to breed and produce young of the same kind. For example, while any two great white sharks are in the same species, as are any two makos, great whites and makos are in different species (since they can't interbreed Answer :SPECIES
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer:
What is the main purpose of the curiosity rover ?
Explanation:
Curiosity's mission is to determine whether the Red Planet ever was, or is, habitable to microbial life. The rover, which is about the size of a MINI Cooper, is equipped with 17 cameras and a robotic arm containing a suite of specialized laboratory-like tools and instruments.
Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.