Taking into account the reaction stoichiometry, 109.09 grams of Ag₂S₂O₃ are formed when 125 g AgBr reacts completely.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
2 AgBr + Na₂S₂O₃ → Ag₂S₂O₃ + 2 NaBr
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- AgBr: 2 moles
- Na₂S₂O₃: 1 mole
- Ag₂S₂O₃: 1 mole
- NaBr: 2 moles
The molar mass of the compounds is:
- AgBr: 187.77 g/mole
- Na₂S₂O₃: 158 g/mole
- Ag₂S₂O₃: 327.74 g/mole
- NaBr: 102.9 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- AgBr: 2 moles ×187.77 g/mole= 375.54 grams
- Na₂S₂O₃: 1 mole ×158 g/mole= 158 grams
- Ag₂S₂O₃: 1 mole ×327.74 g/mole= 327.74 grams
- NaBr: 2 moles ×102.9 g/mole= 205.8 grams
<h3>Mass of Ag₂S₂O₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 375.54 grams of AgBr form 327.74 grams of Ag₂S₂O₃, 125 grams of AgBr form how much mass of Ag₂S₂O₃?

<u><em>mass of Ag₂S₂O₃= 109.09 grams</em></u>
Then, 109.09 grams of Ag₂S₂O₃ are formed when 125 g AgBr reacts completely.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
Answer: The major product of the reaction between Hydrobromic Acid and 2-bromo-1-butene in the presence of ether and acid is 2,2-dibromobutane.
Explanation:
The mechanism of the reaction is supported by the Markovnikov's rule which explains that in the addition reaction of alkenes by hydrogen-halogen compounds, the incoming halogen substituent goes to the more substituted Carbon. It can also be stated that incoming hydrogen atom goes to the Carbon with more Hydrogen atoms.
The only case when the reverse of Markovnikov's rule takes place is when Hydrogen peroxide is present and the addition reagent is HBr.
This case is not like that and it simply follows the Markovnikov's rule.
I'll add an attachment of the reaction to this now.
Answer: -
H₂ will diffuse the fastest.
Explanation: -
According to Graham's Law of Diffusion
The rate of diffusion is inversely proportional to the square root of it's density or molar mass. So the lower the molar mass faster the rate of diffusion.
Molar mass of Ne = 20 g / mol
Molar mass of CH₄ = 12 x 1 + 1 x 4 = 16 g /mol
Molar mass of Ar = 40g / mol
Molar mass of H₂ = 1 x 2 = 2 g / mol
Thus H₂ will diffuse the fastest.
<u>Answer:</u> The standard free energy change of formation of
is 92.094 kJ/mol
<u>Explanation:</u>
We are given:

Relation between standard Gibbs free energy and equilibrium constant follows:

where,
= standard Gibbs free energy = ?
R = Gas constant = 
T = temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
K = equilibrium constant or solubility product = 
Putting values in above equation, we get:

For the given chemical equation:

The equation used to calculate Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(Ag^+(aq.))})+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times \Delta G^o_f_{(Ag_2S(s))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag%5E%2B%28aq.%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag_2S%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![285.794=[(2\times 77.1)+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times (-39.5))]\\\\\Delta G^o_f_{(S^{2-}(aq.))=92.094J/mol](https://tex.z-dn.net/?f=285.794%3D%5B%282%5Ctimes%2077.1%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%28-39.5%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%3D92.094J%2Fmol)
Hence, the standard free energy change of formation of
is 92.094 kJ/mol
Answer:
Chemical Formula
Explanation:Manganese(II) sulfate is a metal sulfate in which the metal component is manganese in the +2 oxidation state. It has a role as a nutraceutical. It is a metal sulfate and a manganese molecular entity. It contains a manganese(2+).