For this case we must find the product of the following expression:
![\sqrt [3] {5} * \sqrt {2}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B5%7D%20%2A%20%5Csqrt%20%7B2%7D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We rewrite the expression using the lowest common index of 6, then:

We rewrite the terms in an equivalent way:

We rewrite the expression using the property mentioned:
![\sqrt [6] {5 ^ 2} * \sqrt [6] {2 ^ 3} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%7D%20%2A%20%5Csqrt%20%5B6%5D%20%7B2%20%5E%203%7D%20%3D)
We combine using the product rule for radicals:
![\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%7D%20%2A%20%5Csqrt%20%5Bn%5D%20%7Bb%7D%20%3D%20%5Csqrt%20%5Bn%5D%20%7Bab%7D)
So:
![\sqrt [6] {5 ^ 2 * 2 ^ 3} =\\\sqrt [6] {25 * 8} =\\\sqrt[6]{200}](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%20%2A%202%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B6%5D%20%7B25%20%2A%208%7D%20%3D%5C%5C%5Csqrt%5B6%5D%7B200%7D)
ANswer:
Option b
The simplified expression of 2√8x³(3√10x⁴ - x√5x²) is 24x³√5x - 4x³√10x
<h3>How to determine the simplified product?</h3>
The complete question is added as an attachment
From the attached figure, the product expression is:
2√8x³(3√10x⁴ - x√5x²)
Evaluate the exponents
2√8x³(3√10x⁴ - x√5x²) = 2 *2x√2x(3x²√10 - x²√5)
Evaluate the products
2√8x³(3√10x⁴ - x√5x²) = 4x√2x(3x²√10 - x²√5)
Open the bracket
2√8x³(3√10x⁴ - x√5x²) = 12x³√20x - 4x³√10x
Evaluate the exponents
2√8x³(3√10x⁴ - x√5x²) = 24x³√5x - 4x³√10x
Hence, the simplified expression of 2√8x³(3√10x⁴ - x√5x²) is 24x³√5x - 4x³√10x
Read more about expressions at:
brainly.com/question/12990602
#SPJ1
Answer:
4
Step-by-step explanation:
Part A:
-np - 70 < 40
+70
-np < 110
-n < 110/p
Part B
4w-7k=28
-7k=28-4w
7k=4w-28
k=4/7w-4
Answer:
8 and 19
Step-by-step explanation:
To some this, let's first list all the factors of 152. They are;
1, 2, 4, 8, 19, 38, 76, 152.
Now, let's arrange them to reflect being multiplied to get 152.
Thus;
1 × 152 = 152
2 × 76 = 152
4 × 38 = 152
8 × 19 = 152
Also, let's do the same for their sum;
1 + 152 = 153
2 + 76 = 78
4 + 38 = 42
8 + 19 = 27
Looking at the figures above, the ones that their product is 152 but have the least sum are 8 and 19