1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
13

Select the correct answer,

Physics
2 answers:
Gnom [1K]3 years ago
7 0

Answer:

HE IS CORRECT IT IS A

Explanation:

I TOOK THE TEST

Ipatiy [6.2K]3 years ago
5 0

Answer:

A. The electron releases energy in form of light

Explanation:

This emission is known as spontaneous emission.

You might be interested in
A body weights 50 N in air and 45 N when wholly immersed in water calculate (i) the loss in weight of the body in water (ii) the
Lelechka [254]

Answer:

difference  \: in \: weight = 150n - 100n = 50n

Now,buyantant force

difference \: in \: weight \: = volume(body) \times density \: of \: water \:  \times g

so;

50 =  {v}^{b}  \times 1 \times  {10}^{3}  \times 9.8m {s}^{2}

{v}^{b}  =  \frac{50}{1000 } \times 9.8

=  \frac{50}{9800}

= 0.0051

Now,

mass \: in \: air \:  = 150n =  \frac{150}{9.8kg}

density =  \frac{weght}{volume}

=  \frac{150}{0.0051}  \times 9.8 \\ x = 3000

And now,

specific \: density \:  =  \frac{density of \: the \: body}{density \: of \: water}

=  \frac{3000}{1000}

= 3

Hence that,specific density of a given body is 3

please mark me as brainliest, please

3 0
3 years ago
Determine the change in electric potential energy of a system of two charged objects when a -2.1-C charged object and a -5.0-C c
elena55 [62]

Answer:

Change in electric potential energy ∆E = 365.72 kJ

Explanation:

Electric potential energy can be defined mathematically as:

E = kq1q2/r ....1

k = coulomb's constant = 9.0×10^9 N m^2/C^2

q1 = charge 1 = -2.1C

q2 = charge 2 = -5.0C

∆r = change in distance between the charges

r1 = 420km = 420000m

r2 = 160km = 160000m

From equation 1

∆E = kq1q2 (1/r2 -1/r1) ......2

Substituting the given values

∆E = 9.0×10^9 × -2.1 ×-5.0(1/160000 - 1/420000)

∆E = 94.5 × 10^9 (3.87 × 10^-6) J

∆E = 365.72 × 10^3 J

∆E = 365.72 kJ

6 0
3 years ago
if a train starts from rest and attains a velocity of 100m/s in 25 seconds. calculate the acceleration produced by the train.​
stira [4]
-4 km/s2

Explanation:
0-100/25
-100/25
-4
5 0
3 years ago
A heavy piece of hanging sculpture is suspended by a 90 cm-long, 5.0 g steel wire. When the wind blows hard, the wire hums at it
kupik [55]

Answer: The mass of the sculpture is 11.8kg

Explanation:

Using the equation of fundamental frequency of a taut string.

f = (1/2L)*√(T/μ) .... (Eqn1)

Where

f= frequency in Hertz =80Hz

T = Tension in the string = Mg

M represent the mass of the substance (sculpture) =?

g= 9.8m/s^2

L= Length of the string=90cm=0.9m

μ= mass density = mass of string /Length of string

mass of string =5g=0.005kg

L=0.9m

μ=0.005/0.9 = 0.0056kg/m

Using (Eqn1)

80= 1/(2*0.9) √(T/0.0056)

144= √(T/0.0056)

Square both sides

20736= T/0.0056

T= 116.12N

Recall that T =Mg

116.12= M * 9.8

M=116.12/9.8

M= 11.8kg

Therefore the mass of the sculpture is 11.8kg

4 0
3 years ago
A charged particle A exerts a force of 2.45 μN to the right on charged particle B when the particles are 12.2 mm apart. Particle
Brilliant_brown [7]

Answer:

F_2 = 1.10 \mu N

Explanation:

As we know that the electrostatic force is a based upon inverse square law

so we have

F = \frac{kq_1q_2}{r^2}

now since it depends inverse on the square of the distance so we can say

\frac{F_1}{F_2} = \frac{r_2^2}{r_1^2}

now we know that

r_2 = 18.2 mm

r_1 = 12.2 mm

also we know that

F_1 = 2.45 \mu N

now from above equation we have

F_2 = \frac{r_1^2}{r_2^2} F_1

F_2 = \frac{12.2^2}{18.2^2}(2.45\mu N)

F_2 = 1.10 \mu N

5 0
4 years ago
Other questions:
  • What is the question
    6·1 answer
  • Every year _______ species go extinct.<br> a. 3<br> b. 72<br> c. 1000<br> d. 20000
    8·2 answers
  • Solving 2-D Motion
    10·2 answers
  • Mary has a mass of 40 kg and sprints at 1 m/s. How much kinetic energy does she have?
    11·1 answer
  • An electron in the Thomson model of hydrogen
    14·1 answer
  • The dwarf planet Ceres contains over 50% of the mass of the main asteroid belt.
    10·1 answer
  • Electromagnetic waves polarized in the x direction propagate towards an ideal polarizer whose axis is aligned with the y-axis. H
    6·1 answer
  • 3. A 70 kg person climbs a 6 m ladder. How much work is required by the person?
    8·1 answer
  • Please explain the function of the 8 organelles listed by using an analogy. Choose ONE topic. A house, a business, an activity,
    15·2 answers
  • A box is being dragged across the floor at a constant speed by a rope pulling horizontally on it. friction is not negligible. id
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!