Make sure the equation is always balanced first. (It is balanced for this question already) 6.022 x 10^23 is Avogadro’s number. In one mole of anything there is always 6.022 x 10^23 molecules, formula units, atoms. For one mol of an element/ compound use molar mass (grams).
Multiply everything on the top = 8.61x10^47
Multiple everything on bottom= 1.20x10^24
Divide top and bottom = 7.15x10^23
Answer: 7.15x10^23 mol SO2
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
the answer is C
Explanation:
6.7 to 13.2 then look at the numbers they go up but not a lot each time
So your answer would pretty much be 2.80 x 10^24. The picture is just the explanation and how you would get that answer.
Answer:
Equation 2, because K being more reactive, exchanges position with Pb in PbNO3.
Explanation: