<span> 2C2H2(g) + 5O2(g) → 4CO2(g) + 2H2O(g)
from the reaction 2 mol 4 mol
from the problem 5.4 mol 10.8 mol
M(CO2) = 12.0 +2*16.0 = 44.0 g/mol
10.8 mol CO2 * 44.0 g CO2/1 mol CO2 = 475.2 g CO2 </span>≈480 = 4.8 * 10² g
Answer is C. 4.8*10² g.
Answer:
energy = heat = producers = consumer animals =
decomposers = heat
Explanation:
this is the best
The question here is solved using basic chemistry. CaCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of CaCl2 that dissolves.
CaCl2(s) --> Ca+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.65 mol CaCl2/1L × 2 mol Cl⁻ / 1 mol CaCl2 = 1.3 M
The answer to this question is [Cl⁻] = 1.3 M
Answer:
If the volume of a gas increased from 2 to 6 L while the temperature was held constant, <u><em>the pressure of the gas decreased by a factor of 3.</em></u>
Explanation:
Boyle's law that says "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or
P * V = k
To obtain the proportionality factor k you must make the quotient:

k= 3
This means that <u><em>if the volume of a gas increased from 2 to 6 L while the temperature was held constant, the pressure of the gas decreased by a factor of 3.</em></u>
Answer:

Explanation:
Hello!
In this case, since the equation we use to model the heat exchange into the calorimeter and compute the heat of reaction is:

We plug in the mass of water, temperature change and specific heat to obtain:

Now, this enthalpy of reaction corresponds to the combustion of propyne:

Whose enthalpy change involves the enthalpies of formation of propyne, carbon dioxide and water, considering that of propyne is the target:

However, the enthalpy of reaction should be expressed in kJ per moles of C3H4, so we divide by the appropriate moles in 7.00 g of this compound:

Now, we solve for the enthalpy of formation of C3H4 as shown below:

So we plug in to obtain (enthalpies of formation of CO2 and H2O are found on NIST data base):

Best regards!