The answer is Na < Cl
Chlorine is more electronegative than sodium because this follows the trend of the periodic table. The trend states that an element's electronegativity increases from left to right of a period and bottom to up of a group. Since sodium and chlorine are from the same period, and chlorine is at the right of sodium, chlorine is more electronegative.
Answer:
3.91 L
Explanation:
Using the ideal gas law equation as follows:
PV = nRT
Where:
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Based on the information given in this question,
P = 5.23 atm
V= ?
n = 0.831 mol
T = 27°C = 27 + 273 = 300K
Using PV = nRT
V = nRT/P
V = (0.831 × 0.0821 × 300) ÷ 5.23
V = 20.47 ÷ 5.23
V = 3.91 L
Answer is (b) , because a chemical change happened
Answer:
See explanation below
Explanation:
In this case, let's see both molecules per separate:
In the case of SeO₂ the central atom would be the Se. The Se has oxidation states of 2+, and 4+. In this molecule it's working with the 4+, while oxygen is working with the 2- state. Now, how do we know that Se is working with that state?, simply, let's do an equation for it. We know that this molecule has a formal charge of 0, so:
Se = x
O = -2
x + (-2)*2 = 0
x - 4 = 0
x = +4.
Therefore, Selenium is working with +4 state, the only way to bond this molecule is with a covalent bond, and in the case of the oxygen will be with double bond. See picture below.
In the case of CO₂ happens something similar. Carbon is working with +4 state, so in order to stabilize the charges, it has to be bonded with double bonds with both oxygens. The picture below shows.