<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
Particles as small as atoms exist.
The given alkyne is Option A 3-heptyne
<h3>
What is an Alkyne ?</h3>
The hydrocarbon having at least one C-C triple bond is called an Alkyne.
It has the general formula of
.
In the question it is being mentioned that it is an alkyne so there will be a triple bond and not a double bond.
It has been asked in the question that
CH3CH₂C ≡ CCH₂CH₂CH3 is which alkyne from the given option.
The counting of the Carbon chain is done from the left side and the Triple bond is at the 3rd Carbon , so 3-heptyne .
To know more about Alkyne
brainly.com/question/23508203
#SPJ1
<h3 />
Answer: 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
Justification:
Althought the question is too open, other answers may arise, the most remarkable similarity between the two compounds is that both are diatomic.
That means that both molecules oxygen, O₂, and carbon monoxide, CO have two atoms.
So, 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
You must remember that 1 mol means a specific number. It is Avogadro's number, which is 6.022 × 10 ²³.
So 1 mol of CO and 1 mol of O₂ are the same number of representative particles: 6.022 ×10²³ molecules eac, and two times that number of atoms each (since each molecule has two atoms).