Where is the rest of the question?
Answer:
There is no exact answer for this question tbh.
The mass of the object can also be determined if the density and volume of an object are known.
Explanation:
Defining law of definite proportions, it states that when two elements form more than one compound, the ratios of the masses of the second element which combine with a fixed mass of the first element will always be ratios of small whole numbers.
A. One of the oxides (Oxide 1) contains 63.2% of Mn.
Mass of the oxide = 100g
Mass of Mn = 63.2 g
Mass of O = 100 - 63.2
= 36.8 g
Ratio of Mn to O = 63.2/36.8
= 1.72
Another oxide (Oxide 2) contains 77.5% Mn.
Mass of oxide = 100 g
Mass of Mn = 77.5 g
Mass of O = 100 - 77.5
= 22.5 g
Ratio of Mn to O = 77.5/22.5
= 3.44
Therefore, the ratio of the masses of Mn and O in Oxide 1 and Oxide 2 is in the ratio 1.72 : 3.44, which is also 1 : 2. So the law of multiple proportions is obeyed.
B.
Oxide 1
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Oxide 2
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
In the equation given above, there is conservation of MASS, CHARGE AND ENERGY.
These three parameters are usually conserved during the course of chemical reactions. When any of these parameter experience a reduction during the course of chemical reaction, such loss is always gained by other elements involved in the same reaction, so that at the end of the day, they are not considered as lost.