Answer:
Answer:
The velocity of the ball when it reaches its highest point is 0
Explanation:
The velocity of the ball when it reaches its highest point is 0
Once the ball is tossed into the air, as it goes up, the initial velocity with which it was thrown, reduces, as the motion of the ball is hindered by several forces such as gravity and air resistance. This slows down the velocity of the ball, up until it reaches a point, where the upwards velocity of the ball becomes zero. at this point, the ball begins to fall back to the ground.
Answer:
In collisions between two isolated objects Newton's third law implies that momentum is always conserved. In collisions between two isolated objects momentum is always conserved. Kinetic energy is only conserved in elastic collisions.
Explanation:
Answer:
Sound waves are longitudinal waves
Explanation:
Sound waves are the longitudinal waves. In longitudinal waves, the particles of the wave move parallel to the direction of propagation of waves.
It moves in the form of compression and rarefaction. When the particles are compact in a space the compression occurs while when they far apart form each other rarefaction occurs.
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz