The amount of current will increase since they are inversely proportional
First of all, that's not an equation. An equation needs an 'equals' sign ( = ),
so you need something like
Amount present = a e^-0.0025t .
'a' = amount present when t = 0 .
The half-life is the time it takes for the original amount to decay to half of it.
That's just 't' when e^-0.0025t = 1/2
Take the natural log of each side: -0.0025t = ln(0.5)
Divide each side by -0.0025 : t = ln(0.5) / (-0.0025) =
(-0.69315) / (-0.0025) =
<em>t = 277.26 minutes</em>
( 4hrs 37min 15.5sec)
Rounded to nearest tenth: t = 277.3 minutes .
In the vertical direction, take up to be positive and down to be negative. Then the net <u>vertical</u> force would be
5120 N - 4050 N = 1070 N
(it's positive, so the net vertical force is pointing upward)
In the horizontal direction, take right to be positive and left to be negative. Then the net <u>horizontal</u> force would be
950 N - 1520 N = -570 N
(negative means the net horizontal force points to the left)
So the net force on the balloon is the vector
<em>F</em> = (1070 N) <em>i</em> + (-570 N) <em>j</em>
(where <em>i</em> and <em>j</em> are the unit vectors in the horizontal and vertical directions, respectively)
The magnitude of the net force on the balloon is the magnitude of this vector:
<em>F</em> = √((1070 N)² + (-570 N)²)
<em>F</em> ≈ 1212 N
Explanation:
Action and reaction are two forces that are equal in magnitude but the direction is opposite.
When a dog walks along the ground, the action force is the force that dog applies on the ground. On the other hand, the reaction force is the force that the ground applies on the dog. It is based on Newton's third law of motion.
Hi there!
Angular momentum is equivalent to:

L = angular momentum (kgm²/s)
I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Plug in the given values for moment of inertia and angular speed:
