Answer:
the answer is white they combine to give white
Answer:
<em>The correct choice is D. Its gravitational potential energy must increase</em>
Explanation:
<u>Conservation of Mechanical Energy</u>
The total amount of mechanical energy, in a closed system in the absence of dissipative forces like friction or air resistance, remains constant.
This means that energy cannot disappear or appear and that potential energy can become kinetic energy or vice versa.
In a closed system like a pendulum, two types of energies are considered: Gravitational potential (U) and kinetic (K). Thus, the sum of both energies must remain constant in time.
Suppose the pendulum is at a state where U=150 J, and K=350 J. The total mechanical energy is:
M = 150 J + 350 J = 500 J
If the kinetic energy decreases to a new value, say K = 200 J, then the gravitational potential must increase to compensate for this new condition, that is: U = 300 J
The correct choice is D. Its gravitational potential energy must increase
Answer:

Explanation:
The magnetic field strength is given by:

where
is the vacuum permeability
I is the current
r is the distance from the wire
In this problem,
I = 6.5 A
r = 6.3 cm = 0.063 m
So, the magnetic field strength is

Answer:
1. 18.25 m/s
2. 0 m/s
Explanation:
1.So the centripetal acceleration of the ball at this lowest point must be, taking gravity into account

The speed at this point would then be


2. Similarly, if T = mg, then the centripetal acceleration must be

As the ball has no centripetal acceleration, its speed must also be 0 as well.
Answer:
Explanation:
If one assume that each turn is like a strand of electromagnet, which can then be added up. Therefore, increase in the number of turns will yield to increase in the magnetic strength. Also if the current increases, then there will be increase in the magnetic field strength.
From Ohm's law
V = IR
I = V/R
That is a direct increase in voltage will lead to increase in current.
Increase the voltage of the battery and increases the number of turns of the coil. Will suit the situation