1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
11

In this circuit the resistance R1 is 7 Ω and R2 is 3 Ω. If this combination of resistors were to be replaced by a single resisto

r with an equivalent resistance, what should that resistance be? Give your answer in units of Ohms (LaTeX: \OmegaΩ).
Physics
1 answer:
Scilla [17]3 years ago
5 0

Answer:

Series combination:

Equivalent resistance =10Ω

Parallel combination:

Equivalent resistance =\frac{21}{10} \Omega

Explanation:

Resistance: Resistance is the ratio of voltage to the current.

R=\frac{V}{I}

R = resistance

I = current

V= potential difference(voltage)

There are two types of resistance combinations.

  1. series combination
  2. parallel combination.

Series combination: If the ending point of one resistance is connected to the starting point of other resistance that combination is known as series combination.

If R₁,R₂ and R₃  are connected in series combination.

Then equivalent resistance = R₁+R₂+R₃

Parallel combination: If the ending point and the starting point of the all resistance are the same points that combination is known as parallel combination.

If R₁,R₂ and R₃  are connected in parallel combination.

Then equivalent resistance  \frac{1}{R}= \frac{1}{R_1}+ \frac{1}{R_2}+\frac{1}{R_3}

Here R₁=7Ω and     R₂=3Ω

If R₁ and R₂  connected in series combination

Then equivalent resistance = (7+3) Ω

                                            =10Ω

If R₁ and R₂  connected in parallel combination

Then equivalent resistance =\frac{1}{(\frac{1}{7} +\frac{1}{3})} \Omega

                                              =\frac{21}{10} \Omega

You might be interested in
In a nuclear fusion reaction two 2H atoms are combined to produce one 4He.
Mrrafil [7]

Answer:

a)= 0.025602u

b) = 23.848MeV

c) N = 1.546 × 10¹³

Explanation:

The reaction is

²₁H   +   ²₁H   ⇄   ⁴₂H + Q

a) The mass difference is

Δm = 2m(²₁H) - m (⁴₂H)

       = 2(2.014102u) - 4.002602u

        = 0.025602u

b) Use the Einstein mass energy relation ship

The enegy  release is the mass difference times 931.5MeV/U

E = (0.025602) (931.5)

   = 23.848MeV

c)

the number of reaction need per seconds is

N = Q/E

     = 59W/ 23.848MeV

  = \frac{59}{(23.848 \times 10^6 )(1.6 \times 10^1^9) } \\\\= 1.546 \times 10^1^3

N = 1.546 × 10¹³

5 0
3 years ago
Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates
marta [7]
First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used are:

For constant acceleration:
a = v,final - v,initial /t
d = v,initial*t + 1/2*at²

For constant velocity:
d = constant velocity*time

The solutions is as follows:

   a = v,final - v,initial /t
  3.8 = (v₁ - 0)/4.6 s
  v₁ = 17.48 m/s

    Total distance = d1 + d2 + d3
    d1 = d = v,initial*t + 1/2*at²
    d2 = constant velocity*time
    
   Total distance =  0*(4.6) + 1/2*(3.8)(4.6)² + (17.48)(9.2) + d3= 257.71
   d3 = 56.69 m

3 0
3 years ago
A small sphere is at rest at the top of a frictionless semicylindrical surface. The sphere is given a slight nudge to the right
V125BC [204]

Answer:

vi = 4.77 ft/s

Explanation:

Given:

- The radius of the surface R = 1.45 ft

- The Angle at which the the sphere leaves

- Initial velocity vi

- Final velocity vf

Find:

Determine the sphere's initial speed.

Solution:

- Newton's second law of motion in centripetal direction is given as:

                         m*g*cos(θ) - N = m*v^2 / R

Where, m: mass of sphere

             g: Gravitational Acceleration

             θ: Angle with the vertical

             N: Normal contact force.

- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:

                         m*g*cos(θ) - 0 = m*vf^2 / R

                         g*cos(θ) = vf^2 / R    

                         vf^2 = R*g*cos(θ)

                         vf^2 = 1.45*32.2*cos(34)

                        vf^2 = 38.708 ft/s

- Using conservation of energy for initial release point and point where sphere leaves cylinder:

                          ΔK.E = ΔP.E

                          0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))

                          ( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))

                          vi^2 =  vf^2 - 2*g*R*( 1 - cos(θ))

                          vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))

                          vi^2 = 22.744

                           vi = 4.77 ft/s

4 0
3 years ago
A 46.8-g golf ball is driven from the tee with an initial speed of 58.8 m/s and rises to a height of 24.7 m. (a) Neglect air res
Andre45 [30]

Answer:

a) the kinetic energy of the ball at its highest point is 69.58 J

b) its speed when it is 8.11 m below its highest point is 55.97 m/s

Explanation:

Given that;

mass of golf ball m = 46.8 g = 0.0468 kg

initial speed of the ball v₁ = 58.8 m/s

height h = 24.7 m

acceleration due to gravity = 9.8 m/s²

the kinetic energy of the ball at its highest point = ?

from the conservation of energy;

Kinetic energy at the highest point will be;

K.Ei + P.Ei = KEf + PEf

now the Initial potential energy of the ball P.Ei = 0 J

so

1/2mv² + 0 J = KEf + mgh

K.Ef = 1/2mv² - mgh

we substitute

K.Ef = [1/2 × 0.0468 × (58.8 )²] - [0.0468 × 9.8 × 24.7]

K.Ef  = 80.904 - 11.3284

K.Ef = 69.58 J

Therefore, the kinetic energy of the ball at its highest point is 69.58 J

b) when the ball is 8.11 m below the highest point, speed = ?

so our raw height h' will be ( 24.7 m - 8.11 m) = 16.59 m

so our velocity will be v₂

also using the principle of energy conservation;

K.Ei + P.Ei = KEh + PEh

1/2mv² + 0 J = 1/2mv₂² + mgh'

1/2mv₂² = 1/2mv² - mgh'

multiply through by 2/m

v₂² = v² - 2gh'

v₂ = √( v² - 2gh' )

we substitute

v₂ = √( (58.8)² - 2×9.8×16.59 )

v₂ = √( 3457.44 - 325.164 )  

v₂ = √( 3132.276 )

v₂ = 55.97 m/s

Therefore, its speed when it is 8.11 m below its highest point is 55.97 m/s

5 0
3 years ago
10. How much total work do you do when you lift a 50 kg microwave 1.0 m off the ground and then push it 1.0 m
Mariulka [41]

Work formula:

W = Fd\cos(\theta)

F = 50N, d = 1.0 m

When you lift something straight up, the angle of the force is 90º

cos(90º) is 0, so there's no work done when you lift the microwave off the ground

W = (50N)(1.0)(0) = 0

F = 50N, d = 1.0 m

When you push the microwave, the angle is 0º and cos(0º) is 1. So there is work done here:

W = (50 N)(1.0m)(1)

W = 50

total work = 50 joules

6 0
2 years ago
Other questions:
  • Yesenia wants to bake cookies in her electric oven. The oven will transform electrical energy into ________ energy
    6·2 answers
  • Aliens come blasting into our solar system and wipe out everything but the Sun, the Earth, and Jupiter. Discuss (conceptually) w
    10·1 answer
  • The mechanical advantage of a machine is always greater than 1. true or false
    9·2 answers
  • A stress of 210 MPa is applied to a low-carbon steel with an elastic modulus of 211 GPa. After the stress is applied and then re
    11·1 answer
  • Use the drop-down menus to complete the passage. A galvanometer detects by showing needle movement in . If the wires in this gal
    6·2 answers
  • In an intense battle, gunfire can so concentrated that bullets from opposite sides collide in midair. Suppose that a bullet (wit
    13·1 answer
  • Suppose the foreman had released the box from rest at a height of 0.25 m above the ground. What would the crate's speed be when
    12·1 answer
  • Determine the activity of the sample of cerium when the sample was 20 seconds old
    13·1 answer
  • A Projectile attains its maximum height when the angle of projection is?​
    7·1 answer
  • Tori applies a force of 20 newtons to move a bookcase with a mass of 40 kg. What
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!