Answer:
Final speed of striped ball is 3 m/s in left direction .
Explanation:
Given :
Two billiard ball with the same mass moves toward the left at the same speed 3 m/s .
Let , us assume right hand side direction to be positive and left hand side direction to be negative .
Also , let speed of ball after collision is (striped ball ) u and (solid ball) v .
It is also given that the collision is elastic .
Therefore , kinetic energy is conserved .
...... ( 1 )
Also , by conserving linear momentum .
We get :
...... ( 2 )
Putting value of u from equation 2 to equation 1 .
We get :

And , u = -3 m/s .
Therefore , final speed of striped ball is 3 m/s in left direction .
Hence , this is the required solution .
Answer:
metre for length and the kilogram for Mass
Answer: the golf ball with smooth surface would hit the ground first.
Jusitification:
An analysis of forces show two vertical forces acting on the golf balls.
1) one force is the weight (mg) which is vertical downward
2) the other force is the drag force exerted by the air on the golf balls, and it is vertical upward.
3) the drag force opposes the weight, so the acceleration downward is determined by the difference of the weiight and the drag force, until the balls reach the terminal speed (when the drag force equals the weight).
4) the drag force depends on the shape and area of the object falling. Being the surface of one ball smooth implies that the drag force will be less than the one on the other ball.
5) less drag force implies that the terminal velocity of the smooth ball will he higher, ant then it will hit the ground first.
The acceleration on surface of moon =1.67m/s^2
Weight =mass ×acceleration
=7×1.67
=11.69N
Answer:
0.336 rad/s
Explanation:
= Angular speed of the turntable = -0.2 rad/s
R = Radius of turntable = 2.9 m
I = Moment of inertia of turntable = 
M = Mass of turn table = 53 kg
= Magnitude of the runner's velocity relative to the earth = 3.6 m/s
As the momentum in the system is conserved we have

The angular velocity of the system if the runner comes to rest relative to the turntable which is the required answer is 0.336 rad/s