1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
4 years ago
9

11. You want to calculate the displacement of an object thrown over a bridge. Using -10 m/s2 for acceleration due to gravity, wh

at would be the total displacement of the object if it took 8 seconds before hitting the water?
Physics
1 answer:
IrinaVladis [17]4 years ago
7 0

Answer:

The displacement was 320 meters.

Explanation:

Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

d = \frac{1}{2}gt^2=\frac{1}{2}10\frac{m}{s^2}\cdot 8^2 s^2=320 m

The displacement was 320 meters.

You might be interested in
what happens to a circuits resistance, voltage, and current when you increase the diameter of the wire in the circuit?
zhannawk [14.2K]

Answer:

Option D.

Resistance (R) decreases

Voltage (V) is constant

Current (I) increases

Explanation:

We'll begin by writing an equation relating resistance and diameter of a wire. This is given below:

R = ρL/A ......... (1)

A = πr² (since the wire is circular in shape)

r = d/2

A = πr² = π(d/2)²

A = πd²/4

Substitute the value of A into equation 1

R = ρL/A

R = ρL ÷ A

R = ρL ÷ πd²/4

R = ρL × 4/πd²

R = 4ρL /πd²

Where:

R is the resistance of the wire.

ρ is the resistivity of the wire.

L is the length of the wire.

A is the cross sectional area of the wire.

r is the radius.

d is the diameter of the wire

From equation (1) above, we can say that the resistance (R) is inversely proportional to the square of the diameter of the wire. This implies that an increase in the diameter of the wire will result in a decrease of the resistance. Also, a decrease in the diameter of the wire will result in an increase in the resistance of the wire.

1. Since the diameter of the wire is increase, therefore, the resistance of the wire will decrease.

2. From ohm's law,

V = IR

Divide both side by I

R = V/I

Where:

R is the resistance

V is the voltage

I is the current

From the above equation, the resistance (R) is directly proportional to the voltage (V) and inversely proportional to the current (I).

If we keep the voltage constant, this means that an increase in the resistance will lead to a decrease in the current. Also, a decrease in the resistance will lead to an increase in the current.

Since the resistance of the wire decrease, the current will increase.

From the illustrations made above, an increase in the diameter of the wire will lead to:

1. Decrease in resistance.

2. Voltage is constant.

3. Increase in current.

5 0
4 years ago
The tallest sequoia sempervirens tree in California’s redwood national parks is 111 m tall. Suppose an object is thrown downward
ch4aika [34]

The object's <u>initial velocity</u> is equal to -10.59\frac{m}{s}

Why?

From the statement we know the height of the tree and the time it takes to reach the ground, so, if we need to calculate its initial velocity, we can use the following formula:

y=y_o-v_{o}*t-\frac{1}{2}g*t^{2}

Where,

y, is the final height (0 meters in this case)

yo, is the initial height (111 meters in this case)

t, is the time elapsed (3.8 seconds in this case)

vo, is the initial speed.

g, is the acceleration due to gravity (-9.81 m/s2)

Now, let's set the origin at the top of the tree, so, rewriting the formula, we have:

y=y_o+v_{o}*t+\frac{1}{2}g*t^{2}

So, isolating the initial velocity, we have:

y=y_o+v_{o}*t+\frac{1}{2}g*t^{2}

y=y_o+v_{o}*t+\frac{1}{2}g*t^{2}\\\\v_{o}*t=y-y_o-\frac{1}{2}g*t^{2}\\\\v_{o}=\frac{y-y_o-\frac{1}{2}g*t^{2}}{t}

Finally, substituting and calculating, we have:

v_{o}=\frac{-111m-0-\frac{1}{2}(-9.8\frac{m}{s^{2}}) *(3.8s)^{2})}{3.8s}\\\\v_{o}=\frac{-111m-\frac{1}{2}(-9.8\frac{m}{s^{2}})*(14.44s^{2})}{3.8s}\\\\v_{o}=\frac{-111m-\frac{1}{2}(-141.51m)}{3.8s}=\frac{-111m+70.75m}{3.8s}\\\\v_{o}=\frac{-40.25m}{3.8s}=-10.59\frac{m}{s}

Hence, we have that the <u>initial velocity</u> of the object is -10.59\frac{m}{s}

Have a nice day!

7 0
4 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
4 years ago
A fixed mass of an ideal gas is heated from 50°C to 80°C (a) at constant volume and (b) at constant pressure. For which case do
soldi70 [24.7K]

Answer:

Specific heat at constant pressure is =  1.005 kJ/kg.K

Specific heat at constant volume is =  0.718 kJ/kg.K

Explanation:

given data

temperature T1 =  50°C

temperature T2 = 80°C

solution

we know energy require to heat the air is express as

for constant pressure and volume

Q  = m ×  c × ΔT     ........................1

here m is mass of the gas and c is specific heat of the gas and Δ T is change in temperature of the gas

here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.

and here at constant pressure Specific heat  is greater than the specific heat at constant volume,

so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is

Specific heat at constant pressure is =  1.005 kJ/kg.K

and

Specific heat at constant volume is =  0.718 kJ/kg.K

3 0
4 years ago
When the input work on simple machine equals the work the machine is said to be 100% efficient
Semmy [17]

Answer:

This is not a question, but a statement. The concept that the work done is equal to the input work on a simple machine is called ideal machine. An ideal machine has 100% efficiency which means that there is no loss. All the amount of input work is equal to the useful output of the machine.

Explanation:

8 0
3 years ago
Other questions:
  • Two power lines run parallel for a distance of 254 m and are separated by a distance of 40.0 cm. If the current in each of the t
    6·1 answer
  • How far above the surface of earth would you weigh 71.5 percent of your surface weight?
    13·1 answer
  • At which approximate light intensity does the oxygen production begin to level off? a. 40% b. 60% c. 80% d. 100%
    12·2 answers
  • The gold-like mineral in the metamorphic rock pictured below is known as pyrite. When pyrite is exposed to air and water it can
    7·2 answers
  • In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a
    6·1 answer
  • A book is sitting on a table, completely still. What would happen if gravity suddenly stopped affecting the book? A. The book wo
    5·1 answer
  • Please answer me my question​
    5·1 answer
  • A 6.11-g bullet is moving horizontally with a velocity of 366 m/s, where the sign indicates that it is moving to the right (see
    8·1 answer
  • Which terrestrial world has the most atmospheric gas?
    5·1 answer
  • True of false. Red stars are hotter than blue stars.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!