Answer:
From top to bottom coyote, crow, squirrel, then acorn
Explanation:
The coyote has the least amount of energy and its the biggest predator so it belongs at the top. The crows eat squirrels and the squirrels eat acorns.
Answer:
Photoelectric effect, pair production and Compton scattering
Explanation:
Gamma rays, having no charge, can be slowed slowly by ionization as a material passes through. They suffer other mechanisms that eventually make them disappear, transferring their energy, they can cross several centimeters of a solid, or hundreds of meters of air, without undergoing any process or affecting the material they cross. Then they suffer one of the three effects and deposit much of their energy there. The three mechanisms of interaction with matter are: the photoelectric effect, the Compton effect and the production of pairs.
The photoelectric effect is that the photon meets an electron in the material and transfers all its energy, disappearing the original photon. The secondary electron acquires all the energy of the photon in the form of kinetic energy, and is sufficient to separate it from its atom and convert it into a projectile. This is stopped by ionization and excitation of the material
In the Compton effect the photon collides with an electron as if it were a clash between two elastic spheres. The secondary electron acquires only part of the energy of the photon and the rest takes it with another photon of lesser energy and diverted.
When an energy photon approaches the intense electric field of a nucleus, the production of pairs can happen. In this case the photon is transformed into an electron positron pair. Since the sum of the mass of the pair is 1.02 MeV, it cannot happen if the photon's energy is less than this amount. If the energy of the original photon is greater than 1.02 MeV, the surplus is distributed by the electron and the positron as kinetic energy, and the material can be ionized. The positron at the end of its path forms a positronium and then annihilates producing two annihilation photons, 0.51 MeV each.
Answer:
Chemical energy
Explanation:
Energy in carbohydrates is stored as chemical energy which is released when the carbohydrate is broken down by the body to give glucose and ATP. Animals eat carbohydrates as energy molecules from which they derive energy from the stored chemical energy.
When one mole of Na3PO4.3H2O is heated extensively, three moles of water are released.
The water molecules in Na3PO4.3H2O are called molecules of water of crystallization. These molecules are not covalently bonded to the Na3PO4 molecule. They are only loosely attached to the substance.
Strong heating will drive away these molecules of water of crystallization to give three moles of water in the product.
Hence, when one mole of Na3PO4.3H2O is heated extensively, three moles of water are released.
Learn more: brainly.com/question/14252791
Answer:
1045
Answer: 1045 J of energy was released on cooling the down the water from 20 °C to 10 °C.