Answer:
89.4%
Explanation:
Initially, there is 5.0 of the acetanilide in 100 mL of water, then the solution is chilled at 0ºC. The solubility represents the amount that the solvent (water) can dissolve of the solute (acetanilide). So, at 0ºC, 100 mL of water can dissolve till 0.53 g of the compound, the rest will precipitate and will be recovered.
So, the mass that is recovered is 5.0 - 0.53 = 4.47 g
The percent recovery is:
(4.47/5)x100% = 89.4%
Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>
Thermodynamic quantity equivalent to the total heat content of a system It is equal to the internal energy of the system plus the product of pressure and volume
Answer:
The mass of objects remains constant throughout the universe. This is because an object is made of he same amount of matter (atoms), no matter where you take it in the universe. If you take an object from the Earth to the moon, only the weight will change.
Explanation:
B. The energy barrier between reactants and products
hope this helps!
(: