1 mole of any gas occupy 22.4 L at STP (standard temperature and pressure, 0°C and 1 atm).
Let given gases be 1 mole. So their volumes will be the same, 22.4 liters.
Density is the ratio of mass to volume.
By formula; density= mass/volume; d=m/V
To find out masses of gases, do the mole calculation.
By formula; mole= mass/molar mass; n= m/M; m= n*M
Molar masses are calculated as
1. C₂H₆ (ethane) = 2*12 g/mol + 6*1 g/mol= 30 g/mol
2. NO (nitrogen monoxide) = 1*14 g/mol + 1*16 g/mol= 30 g/mol
3. NH₃ (ammonia) = 1*14 g/mol + 3*1 g/mol= 17 g/mol
4. H₂O (water) = 2*1 g/mol + 1*16 g/mol= 18 g/mol
5. SO₂ (sulfur dioxide) = 1*32 g/mol + 2*16 g/mol= 64 g/mol
Use Periodic Table to get atomic mass of elements.
Since their volumes are equal, compounds having the same molar mass will have the same density.
Recall the formula d= m/V.
Ethane and nitrogen monoxide have the same density.
The answer is C₂H₆ and NO.
Answer:
.371 mole of NaCl
Explanation:
Na Cl Mole weight = 22.989 + 35.45 = 58.439 g/mole
21.7 g / 58.439 g/mole = .371 mole
<span>The </span>elements are arranged<span> in order of increasing atomic number. Vertical columns(called groups) contain </span>elements with similar properties. Horizontal rows called periods elements with<span> the same number of atomic orbitals(That's why Hydrogen and Helium are separated from the rest of the table).
Hope this helps:)</span>
Answer:
The total number of orbitals for a given n value is n2.
Explanation:
For a hydrogen atom with n=1, the electron is in its ground state; if the electron is in the n=2 orbital, it is in an excited state.
Answer:
The highlighted words in the explanation.
Explanation:
A clue comes by considering the noble gas elements, the rightmost column of the periodic table. These elements—helium, neon, argon, krypton, xenon, and radon—do not form compounds very easily, which suggests that they are especially stable as lone atoms. What else do the noble gas elements have in common?