Answer:
elastic potential energy
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.
Explanation:
Answer:
Explanation:
We shall take the help of vector form of displacement . Taking east as i and north as j
4.0m N = 4 j
7.5 m E = 7.5 i
6.8 m S = - 6.8 j
3.7 m E, = 3.7 i
3.6 m S = - 3.6 j
5.3 m W = - 5.3 i
3.7 m N, = 3.7 j
5.6 m W = - 5.6 i
4.4 m S = - 4.4 j
4.9 m W = - 4.9 i
Total displacement = 4j +7.5 i -6.8j+3.7i-3.6j-5.3i+3.7j-5.6i-4.4j-4.9i
= -4.6 i -7.1 j
magnitude of displacement = 
= 8.46 m
Direction
Tanθ = 7.1/ 4.6
θ = 57⁰ south of west .
distance walked = 4+7.5 +6.8+3.7+3.6+5.3+3.7+5.6+4.4+4.9
= 49.5 m
Answer:
3 photons
Explanation:
The energy of a photon E can be calculated using this formula:

Where
corresponds to Plank constant (6.626070x10^-34Js),
is the speed of light in the vacuum (299792458m/s) and
is the wavelength of the photon(in this case 800nm).

Tranform the units

The band Gap is 4eV, divide the band gap between the energy of the photon:

Rounding to the next integrer: 3.
Three photons are the minimum to equal or exceed the band gap.
Answer:
B: Horizontally to the left
Explanation:
Horizontal velocity is always constant throughout the entire trajectory of the rocket and acts in the horizontal direction in which the rocket was launched. This is because gravity only acts in the downwards vertical direction.
So in order words at peak height, horizontal velocity is in the horizontal direction in which the rocket was launched.
So if it was to the left, then direction is left but if right, then direction is right.
Looking at the options, the most appropriate will be:
Horizontally to the left
Answer:
The answer is C because there is no friction there will be no friction force only applied and since its on ice you have to account for gravity
Explanation: