I think it's D. Usually, to find the volume of an irregularly shaped object, you put it in water with a labeled beaker to measure how much the water rises. The balance would be used to measure the mass in grams.
Answer:
intinal speed should be 10
Explanation:
v = v0 + at
30 = v0 +10.2
then v0= 10
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Answer:

Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is

Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is

Finally, the change in temperature of an object is related to the energy supplied by

where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:
