Answer:
Option D.
Explanation:
Methods of charging:
1. By friction: when two materials of different electro-negativities rub against each, electrons transfer from one material to another.
2. By induction: When a charged body is brought near an uncharged body, the later gets polarized.
3. By conduction: when electrons from one body to another uncharged while contact, it is known as charging by conduction.
Here, a flower is analogous to an electron. A box of candy is positive charge. A bouquet of flowers is like a charged body which is brought near an uncharged body. It induces charge on ti it by causing it to transfer electron to another.
Thus, option D is correct.
De Broglie's identity gives the relationship between the momentum and the wavelength of a particle:

where
p is the particle momentum
m is its mass
v its velocity
h is the Planck constant

is the wavelength
By re-arranging the equation, we get

and by using the data about the proton, given in the text, we can find the proton's wavelength:
Dx = 20m
V1 = 10m/s
g = 9.8m/s^2
(delta-t) = 2sec
dy = 19.6m
Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure