Answer:
sensory adaption
Explanation:
Sensory adaption is the phenomenon where the intensity of a stimulus experienced by an organism decreases after a certain amount of exposure to the stimulus. This happens in order for us to pay attention to other stimulus.
When you are driving with the windows down and listening to music you are subjected to a lot of stimuli. Here, most of our attention needs to be on driving. So, our brain drowns all the other unneccessary stimuli like the music.
When you enter the car again where the other stimuli which were present while driving are absent, all your attention is diverted to the music. So, your're ears hurt.
The correct answer is the amoeba will deploy its pseudopods (cytoplasmic extentions) to capture the prey and phagocyte.
The amoeba most known and probably the most representative of the kind. Large (up to 500 microns), common in stagnant waters, extremely voracious as evidenced by multiple digestive vacuoles.
Amoebae are characterized by a deformable cell body emitting changes of shape, the pseudopods, which allow them to crawl on a support or to capture microscopic prey by phagocytosis.
What happens when the light hits the glass depends on what it was in before it hit the glass.
WHILE it's in the glass, the speed of light doesn't change.
Answer:
gamma ray, or gamma radiation (symbol γ or {\displaystyle \gamma } \gamma ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.
I = V/Z
V = voltage, I = current, Z = impedance
First let's find the total impedance of the circuit.
The impedance of the resistor is:
= R
R = resistance
Given values:
R = 1200Ω
Plug in:
= 1200Ω
The impedance of the inductor is:
= j2πfL
f = source frequency, L = inductance
Given values:
f = 59Hz, L = 2.4H
Plug in:
= j2π(59)(2.4) = j889.7Ω
Add up the individual impedances to get the Z, and convert Z to polar form:
Z =
+ 
Z = 1200 + j889.7
Z = 1494∠36.55°Ω
I = V/Z
Given values:
V = 170∠0°V (assume 0 initial phase)
Z = 1494∠36.55°Ω
I = 170∠0°/1494∠36.55°Ω
I = 0.1138∠-36.55°A
Round the magnitude of I to 2 significant figures and now you have your maximum current:
I = 0.11A