Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
Answer:
chimical change...or phisical...one or the other...
Explanation:
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions
Answer:
Kinematics is the motion of objects without reference of forces that causes the motion in objects.
Explanation:
Answer:
We know that the gravitational force between two objects of mass M1 and M2 that are at a distance R, is given by:
F = G*(M1*M2)/R^2
Where G is a constant.
If you reduce one of the masses, then the gravitational force between the objects will change.
So if we take un account the Earth and the Sun, when you reduce the mass of Earth, the force between Earth and the Sun will decrease, and this will change the orbit of the Earth around the Sun.
(The orbit also depends on the gravitational force between the Earth and the other planets in the system, and all those forces also change, which also has an impact in the orbit change)