Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them. Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them.
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
An equation relating the length that you measure l to the ship's proper length l0 is
l =l0/y. This is further explained below.
<h3>What is an equation relating the length that you measure l to the ship's proper length l0?</h3>
Generally, Any object's length in a moving frame will look shortened or contracted when seen in that direction. The Lorentz transformation may be used to determine the amount of contraction.
In conclusion, To use the Lorentz Lorentz transformation, the length Lo-x2 - may be determined if it is measured in the moving reference frame. Hence the Resultant l = l0/y.
Read more about Lorentz transformation
brainly.com/question/16284701
#SPJ1
Answer:
vf=94.4 m/s
Explanation:
acceleration is the final velocity minus initial velocity divided by time
a = (vf-vi)/t
Given:
a= 14.2 m/s^2
vi= 0 (at rest)
t = 6.6
Solve for vf
a = (vf-vi)/t
a*t=vf-vi
(14.2)*(6.6)=vf - 0
vf=94.4 m/s
Answer: vector yes
Explanation:
Acceleration is a vector, and thus has a both a magnitude and direction. Acceleration can be caused by either a change in the magnitude or the direction of the velocity.