It depends on the mass of the moving object versus the mass of the stationary object. if the mass of the moving object is larger the stationary object will get sent into motion. if the mass of the stationary object is larger than the moving object, the stationary object will stay stationary and cause the moving object to do the same. if the two objects have the same mass, they will likely move together upon impact and then eventually come to rest.
Answer:
L= 2 mH
Explanation:
Given that
Frequency , f= 10 kHz
Maximum current ,I = 0.1 A
Maximum energy stored ,E= 1 x 10⁻⁵ J
The maximum energy stored in the inductor is given as follows

Where ,L= Inductance
I=Current
E=Energy
Now by putting the values in the above equation


L=0.002 H
L= 2 mH
We know that frequency f is given as

C=Capacitance , f=frequency ,L=Inductance
Now by putting the values






Therefore the inductance and capacitance will be 2 mH and 1.26 x 10⁻⁷ F respectively.
Answer:
A) If you want to achieve the SMALLEST possible resistance, you should attach the leads to the opposite faces that measure b) 5 cm by 8 cm.
B) If you want to achieve the LARGEST possible resistance, you should attach the leads to the opposite faces that measure a) 3 cm × 5 cm
Explanation:
Resistivity is directly proportional to lenght and inversely properly to cross sectional area.
For the first case, 5 cm by 8 cm gives the largest area and leave 3 cm as the lenght. The resistivity of the metal will be smallest in these dimensions.
For the second case, 3 cm by 5 cm gives the smallest area, leaving 8 cm as the lenght. This is the maximum arrangement that can give the largest resistance possible.
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
The answer is going to be B