Answer:
a)Velocity of car =v=16 m/s
b)Force against the track at point B=1.15*
N
Explanation:
Given mass of roller coaster=m=350 kg
Position of A=Ha=25 m
Position of B=Hb=12 m
Net potential energy=mg(ha-hb)
Net potential energy=(350)(9.80)(25-12)
Net potential energy=44590 J
Using energy conservation
net kinetic energy=net potential energy
(1/2)mv^2=mg(ha-hb)
m=350
velocity=v=16 m/s
b)There two force acting,centripetal force upward and gravity downward.
Thus net force acting will be
Net force=(mv^2/r)-mg
Net force=14933.33-3430
Net force=1.15*
N
An example of a a predator in the Ethiopian Highlands ecosystem is the
Wolf.The wolf is a carnivore which acts as a predator to other smaller
animals in the ecosystem.
<h3>What is a Prey?</h3>
Preys are mostly smaller animals in which the predators feed on for food.
They are usually herbivores and primary consumers in the ecosystem.
Examples of Preys include:
Read more about Feeding relationship here brainly.com/question/9852437
Every planet/moon has global wind that are mostly determined by the way the planet/moon rotates and how evenly the Sun illuminates it. On the Earth the equator gets much more Sun than the poles. resulting in warmer air at the equator than the poles and creating circulation cells (or "Hadley Cells") which consist of warm air rising over the equator and then moving North and South from it and back round.
The Earth is also rotating. When any solid body rotates, bits of it that are nearer its axis move slower than those which are further away. As you move north (or south) from the equator, you are moving closer to the axis of the Earth and so the air which started at the equator and moved north (or south) will be moving faster than the ground it is over (it has the rotation speed of the ground at the equator, not the ground which is is now over). This results in winds which always move from the west to the east in the mid latitudes.
Answer:
The answer is option B: the ball´s force on the bat
Explanation:
Using Newton's third law (action and reaction) that says: If two bodies interact the force of one exerts on the other is of equal magnitude, direction and opposite direction
Therefore, if the bat hits the ball (action), the ball (reaction) with a force on the bat of equal magnitude, but opposite direction
Answer:
v = 2917.35 m/s
Explanation:
let Fc be the centripetal force avting on the satelite , Fg is the gravitational force between mars and the satelite, m is the mass of the satelite and M is the mass of mars.
at any point in the orbit the forces acting on the satelite are balanced such that:
Fc = Fg
mv^2/r = GmM/r^2
v^2 = GM/r
v = \sqrt{GM/r}
= \sqrt{(6.6708×10^-11)(6.38×10^23)/(3.38×10^6 + 1.62×10^6)}
= 2917.35 m/s
Therefore, the orbital velocity of the satelite orbiting mars is 2917.35 m/s.