No two electrons in an atom or molecule may have the same four electronic quantum numbers, according to the Pauli Exclusion Principle. Only two electrons can fit into an orbital at a time, hence they must have opposing spins.
<h3>What is Pauli's exclusion principle ?</h3>
According to Pauli's Exclusion Principle, no two electrons in the same atom can have values for all four of their quantum numbers that are exactly the same. In other words, two electrons in the same orbital must have opposing spins and no more than two electrons can occupy the same orbital.
- The reason it is known as the exclusion principle is because it states that all other electrons in an atom are excluded if one electron in the atom has the same specific values for all four quantum numbers.
Learn more about Pauli's exclusion principle here:
brainly.com/question/2623936
#SPJ4
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>
Answer:
The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
Explanation:
Given that,
Energy E = 2 eV
Barrier V₀= 5.0 eV
Width = 1.00 nm
We need to calculate the value of 
Using formula of 

Put the value into the formula


(a). We need to calculate the tunnel probability for width 0.5 nm
Using formula of tunnel barrier

Put the value into the formula


(b). We need to calculate the tunnel probability for width 1.00 nm


Hence, The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.